Advertisement

An approach to account for interfering parametric resonances and anti-resonances applied to examples from rotor dynamics

  • Thomas BreunungEmail author
  • Fadi DohnalEmail author
  • Bastian Pfau
Original Paper
  • 24 Downloads

Abstract

An initially unstable equilibrium position of a system can be stabilized by introducing a parametric excitation. This is especially of interest for suppressing self-excited vibrations, and the effect is known as parametric anti-resonance which can be observed close to the parametric combination frequencies. For the stability analysis, linearized mechanical systems with an arbitrary number of degrees of freedom and time-periodic damping and stiffness matrices are analyzed. To approximate stability maps analytically, the method of averaging is applied. A state-space representation is outlined which lifts the restriction of symmetric stiffness and damping matrices in the common approaches. The eigenvalues of the slow flow are used to determine stability. Close to a parametric combination frequency, these can change significantly. Restricting the analysis to a single parametric resonance frequency may lead to unsatisfactory and even contradictory stability maps due to the local approximation. Therefore, a novel approach, that is capable to account for the interference between the averaged eigenvalues, is outlined and motivated in an engineering manner. To verify the potential of this approach, two example systems from rotor dynamics are revisited.

Keywords

Parametric excitation Averaging Stability Rotor dynamics 

Notes

Acknowledgements

The authors acknowledge Richard Markert for the fruitful discussions on this research topic.

Supplementary material

11071_2019_4761_MOESM1_ESM.mat (653 kb)
Supplementary material 1 (mat 653 KB)

References

  1. 1.
    Bolotin, V.: The Dynamic Stability of Elastic Systems. Holden-Day, San Francisco (1964)zbMATHGoogle Scholar
  2. 2.
    Seyranian, A.P., Mailybaev, A.A.: Multiparameter Stability Theory with Mechanical Applications, vol. 13. World Scientific Pub. Co., Singapore (2003)zbMATHGoogle Scholar
  3. 3.
    Schmidt, G.: Parametererregte Schwingungen (in German, Translated Title “Parametrically Excited Oscillations”). Deutscher Verlag der Wissenschaften, Berlin (1975)Google Scholar
  4. 4.
    Tondl, A.: On the interaction between self-excited and parametric vibrations. In: Monographs and Memoranda No. 25, National Research Institute for Machine Design, Běchovice, Prague, (1978)Google Scholar
  5. 5.
    Yakubovich, V., Starzhinskiĭ, V.: Linear Differential Equations with Periodic Coefficients. A Halsted Press book, Wiley (1975)Google Scholar
  6. 6.
    Hagedorn, P.: Non-linear Oscillations, 2nd edn. Oxford University Press, Oxford (1988)zbMATHGoogle Scholar
  7. 7.
    Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1995)CrossRefzbMATHGoogle Scholar
  8. 8.
    Gasch, R., Nordmann, R., Pfützner, H.: Rotordynamik (in German, Translated Title “Rotordynamics”). 2., vollst. neubearb. und erw. aufl. edition, Springer, Berlin, (2001)Google Scholar
  9. 9.
    Cartmell, M.: Introduction to Linear, Parametric and Nonlinear Vibrations, 1st edn. Chapman and Hall, London (1990)zbMATHGoogle Scholar
  10. 10.
    Tondl, A.: To the problem of quenching self-excited vibrations. Acta Technol. CSAV 43, 109–116 (1998)Google Scholar
  11. 11.
    Dohnal, F.: Damping by parametric stiffness excitation: resonance and anti-resonance. J. Vib. Control 14(5), 669–688 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Dohnal, F.: A contribution to the mitigation of transient vibrations: parametric anti-resonance: theory, experiment and interpretation. In: Habilitation Thesis, Technische Universität Darmstadt, Germany, (2012)Google Scholar
  13. 13.
    Dohnal, F., Tondl, A.: Induced energy transfer between vibration modes using time-periodicity. In: 11th International Conference on Vibration Problems, Lisbon, Portugal, (2013)Google Scholar
  14. 14.
    Dohnal, F., Verhulst, F.: Averaging in vibration suppression by parametric stiffness excitation. Nonlinear Dyn. 54(3), 231–248 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Ecker, H., Tondl, A.: Stabilization of a rigid rotor by a time-varying stiffness of the bearing mounts. In: Vibrations of Rotating Machinery, pp. 45–54. IMechE; Professional Engineering Publishing Limited, Swansea, (2004)Google Scholar
  16. 16.
    Fatimah, S., Verhulst, F.: Suppressing flow-induced vibrations by parametric excitation. Nonlinear Dyn. 31(3), 275–298 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Ott, E., Grebogi, C., Yorke, J.: Controlling chaos. Phys. Rev. Lett. 64(11), 1196–1199 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Lima, R., Pettini, M.: Suppression of chaos by resonant parametric perturbations. Phys. Rev. A 41(2), 726–733 (1990)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Meucci, R., Gadomski, W., Ciofiniand, M., Arecchi, F.: Experimental control of chaos by means of weak parametric perturbations. Phys. Rev. E 49(4), R2528–R2531 (1994)CrossRefGoogle Scholar
  20. 20.
    Qu, Z., Hu, G., Yang, G., Qin, G.: Phase effect in taming nonautonomous chaos by weak harmonic perturbations. Phys. Rev. Lett. 74(10), 1736–1739 (1995)CrossRefGoogle Scholar
  21. 21.
    Seoane, J., Zambrano, S., Euzzor, S., Meucci, R., Arecchi, F., Sanjuán, M.: Avoiding escapes in open dynamical systems using phase control. Phys. Rev. E 78(1), 0162051–0162058 (2008)CrossRefGoogle Scholar
  22. 22.
    Dohnal, F., Mace, B.R.: Damping of a flexible rotor by time-periodic stiffness and damping variation. In: Ninth International Conference on Vibrations in Rotating Machinery, VIRM, Oxford, UK, (2008)Google Scholar
  23. 23.
    Dohnal, F., Markert, R.: Enhancement of external damping of a flexible rotor in active magnetic bearings by time-periodic stiffness variation. J. Syst. Dyn. 5(5), 856–865 (2011)Google Scholar
  24. 24.
    Ecker, H., Pumhössel, T., Tondl, A.: A study on parametric excitation for suppressing self-excited rotor vibrations. In: Proceedings of the Sixth International Conference on Rotor Dynamics, IFToMM, Sydney, Australia, (2002)Google Scholar
  25. 25.
    Pfau, B.: Ein verstellbares Zweiflächengleitlager zur Schwingungsminderung flexibler Rotoren (in German, translated title “An adjustable two-lobe journal bearing for the vibration reduction of flexible rotors”). In: PhD Thesis, Technische Universität Darmstadt, (2018)Google Scholar
  26. 26.
    Dohnal, F., Chasalevris, A.: Exploiting modal interaction during run-up of a magnetically supported Jeffcott rotor. J. Phys. Conf. Ser. 744(1), 012128 (2016)CrossRefGoogle Scholar
  27. 27.
    Chasalevris, A., Dohnal, F.: Improving stability and operation of turbine rotors using adjustable journal bearings. Tribol. Int. 104, 369–382 (2016)CrossRefGoogle Scholar
  28. 28.
    Dohnal, F., Pfau, B., Chasalevris, A.: Analytical predictions of a flexible rotor in journal bearings with adjustable geometry to suppress bearing induced instabilities. In: Proceedings of the 13th International Conference on Dynamical Systems: Theory and Applications, pp. 149–160. Łódź, Poland, (2015)Google Scholar
  29. 29.
    Pfau, B., Breunung, T., Dohnal, F., Markert, R.: Averaging in parametrically excited systems: a state space formulation. In: Proceedings of the third International Conference on Structural Nonlinear Dynamics and Diagnosis, Marrakech, Morocco, (2016)Google Scholar
  30. 30.
    Pfau, B., Rieken, M., Markert, R.: Numerische Untersuchungen eines verstellbaren Gleitlagers zur Unterdrückung von Instabilitäten mittels Parameter-Antiresonanzen (in German, translated title “Numerical investigations for the suppression of instabilities by means of parametric anti-resonances”). In: First IFToMM D-A-CH Conference, Dortmund, Germany, (2015)Google Scholar
  31. 31.
    Barnett, M., Silver, A.: Application of air bearings to high-speed turbomachinery. In: SAE Technical Paper, No. 700720, (1970)Google Scholar
  32. 32.
    Ishida, Y., Yamamoto, T.: Linear and Nonlinear Rotordynamics : A Modern Treatment with Applications, 2nd edn. Wiley, Weinheim (2012)CrossRefGoogle Scholar
  33. 33.
    von Wagner, U., Hochlenert, D., Hagedorn, P.: Minimal models for disk brake squeal. J. Sound Vib. 302(3), 527–539 (2007)CrossRefGoogle Scholar
  34. 34.
    Breunung, T.: Semianalytische Berechnungen von Stabilitätskarten eines gleitgelagerten Rotorsystems mit Parametererregung (in German, translated title “Semi-analytical calculation of stability maps of a rotor system with journal bearings under parametric excitation”). In: Master Thesis, Technische Universität Darmstadt, Germany, (2016)Google Scholar
  35. 35.
    Breunung, T., Dohnal, F., Pfau, B.: An approach to account for multiple interfering parametric resonances and anti-resonances applied to examples from rotor dynamics. In: Proceedings of the 12th International Conference in Vibrations in Rotating Machinery, pp. 381–389. Graz, Austria, (2017)Google Scholar
  36. 36.
    Sanders, J., Verhulst, F., Murdock, J.: Averaging methods in nonlinear dynamical systems. In: Applied Mathematical Sciences, 2nd Edn., vol. 59, Springer, New York (2007)Google Scholar
  37. 37.
    Verhulst, F.: Nonlinear differential equations and dynamical systems. Universitext. Springer, Berlin, 2nd ed., 3. print. edition, (2006)Google Scholar
  38. 38.
    Bogoljubov, N.N., Mitropolskij, J.A.: Asymptotic Methods in the Theory of Non-linear Oscillations. International Monographs Series. Hindustan, Delhi (1961)Google Scholar
  39. 39.
    Bilharz, H.: Bemerkung zu einem Satze von Hurwitz (in German, translated title “On a Theorem by Hurwitz”). ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik / J. Appl. Math. Mech. 24(2), 77–82 (1944)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Guckenheimer, J., Holmes, P.: Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. In: Applied Mathematical Sciences, Corr. 7th printing ed., vol. 42, Springer, New York, (2002)Google Scholar
  41. 41.
    Ecker, H.: Parametric excitation in engineering systems. In: Proceedings of COBEM, Gramado, Brazil, (2009)Google Scholar
  42. 42.
    Ecker, H., Tondl, A.: Increasing the stability threshold of a rotor by open-loop control of the bearing mount stiffness. In: The Third International Symposium On Stability Control Of Rotating Machinery, Cleveland, US (2005)Google Scholar
  43. 43.
    Dohnal, F.: Experimental studies on damping by parametric excitation using electromagnets. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 226(8), 2015–2027 (2012)CrossRefGoogle Scholar
  44. 44.
    Chasalevris, A., Dohnal, F.: A journal bearing with variable geometry for the suppression of vibrations in rotating shafts: Simulation, design, construction and experiment. Mech. Syst. Signal Process. 52–53, 506–528 (2015)CrossRefGoogle Scholar
  45. 45.
    Chasalevris, A., Dohnal, F.: Enhancing stability of industrial turbines using adjustable partial arc bearings. J. Phys. Conf. Ser. 744(1), 012152 (2016)CrossRefGoogle Scholar
  46. 46.
    Childs, D.: Turbomachinery Rotordynamics: Phenomena, Modeling, and Analysis. Wiley, Hoboken (1993)Google Scholar
  47. 47.
    Lang, O., Steinhilper, W.: Gleitlager—Berechnung und Konstruktion von Gleitlagern mit konstanter und zeitlich veränderlicher Belastung (Konstruktionsbücher Band 31) (in German, translated title”Journal bearings - Calculation and construction of Journal bearings with constant and time varying load”). Springer, New York, (1978)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute for Applied Dynamics, Otto-Berndt-Straße 2Technische Universität DarmstadtDarmstadtGermany
  2. 2.Division for Mechatronics LienzUMITLienzAustria
  3. 3.Institute for Mechanical SystemsETH ZürichZurichSwitzerland

Personalised recommendations