Advertisement

Breathers, solitons and rogue waves of the quintic nonlinear Schrödinger equation on various backgrounds

  • Stanko N. NikolićEmail author
  • Omar A. Ashour
  • Najdan B. Aleksić
  • Milivoj R. Belić
  • Siu A. Chin
Original Paper
  • 57 Downloads

Abstract

We investigate the generation of breathers, solitons, and rogue waves of the quintic nonlinear Schrödinger equation (QNLSE) on uniform and elliptical backgrounds. The QNLSE is the general nonlinear Schrödinger equation that includes all terms up to the fifth-order dispersion. We use Darboux transformation to construct initial conditions for the dynamical generation of localized high-intensity optical waves. The condition for the breather-to-soliton conversion is provided with the analysis of soliton intensity profiles. We discover a new class of higher-order solutions in which Jacobi elliptic functions are set as background seed solutions of the QNLSE. We also introduce a method for generating a new class of rogue waves—the periodic rogue waves—based on the matching of the periodicity of higher-order breathers with the periodicity of the background dnoidal wave.

Keywords

Quintic nonlinear Schrödinger equation Darboux transformation Rogue waves 

Notes

Acknowledgements

This research is supported by the Qatar National Research Fund (Project NPRP 8-028-1-001). S.N.N. acknowledges support from Grants III 45016 and OI 171038 of the Serbian Ministry of Education, Science and Technological Development. N.B.A. acknowledges support from Grant OI 171006 of the Serbian Ministry of Education, Science and Technological Development. O.A.A. is supported by the Berkeley Graduate Fellowship and the Anselmo J. Macchi Graduate Fellowship. M.R.B. acknowledges support by the Al-Sraiya Holding Group.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Bao, W.: The nonlinear Schrödinger equation and applications in Bose–Einstein condensation and plasma physics. In: Lecture Note Series, IMS, NUS, vol. 9 (2007)Google Scholar
  2. 2.
    Shukla, P.K., Eliasson, B.: Nonlinear aspects of quantum plasma physics. Phys. Usp. 53, 51 (2010)CrossRefGoogle Scholar
  3. 3.
    Busch, T., Anglin, J.R.: Dark–bright solitons in inhomogeneous Bose–Einstein condensates. Phys. Rev. Lett. 87, 010401 (2001)CrossRefGoogle Scholar
  4. 4.
    Dudley, J.M., Dias, F., Erkintalo, M., Genty, G.: Instabilities, breathers and rogue waves in optics. Nature Photon. 8, 755 (2014)CrossRefGoogle Scholar
  5. 5.
    Agrawal, G.P.: Applications of Nonlinear Fiber Optics. Academic Press, San Diego (2001)Google Scholar
  6. 6.
    Kibler, B., Fatome, J., Finot, C., Millot, G., Dias, F., Genty, G., Akhmediev, N., Dudley, J.M.: Observation of Kuznetsov-Ma soliton dynamics in optical fibre. Sci. Rep. 6, 463 (2012)CrossRefGoogle Scholar
  7. 7.
    Osborne, A.S.: Nonlinear Ocean Waves and the Inverse Scattering Transform. Academic Press, New York (2010)zbMATHGoogle Scholar
  8. 8.
    Dudley, J.M., Taylor, J.M.: Supercontinuum Generation in Optical Fibers. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  9. 9.
    Kedziora, D.J., Ankiewicz, A., Chowdury, A., Akhmediev, N.: Integrable equations of the infinite nonlinear Schrödinger equation hierarchy with time variable coefficients. Chaos 25, 103114 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ankiewicz, A., Kedziora, D.J., Chowdury, A., Bandelow, U., Akhmediev, N.: Infinite hierarchy of nonlinear Schrödinger equations and their solutions. Phys. Rev. E 93, 012206 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Serkin, V.N., Hasegawa, A.: Novel soliton solutions of the nonlinear Schrödinger equation model. Phys. Rev. Lett. 85, 4502 (2000)CrossRefGoogle Scholar
  12. 12.
    Akhmediev, N., et al.: Roadmap on optical rogue waves and extreme events. J. Opt. 18, 063001 (2016)CrossRefGoogle Scholar
  13. 13.
    Sulem, C., Sulem, P.-L.: The Nonlinear Schrödinger Equation. Springer, New York (1999)zbMATHGoogle Scholar
  14. 14.
    Ankiewicz, A., Soto-Crespo, J.M., Akhmediev, N.: Rogue waves and rational solutions of the Hirota equation. Phys. Rev. E 81, 046602 (2010)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Anderson, D., Lisak, M.: Nonlinear asymmetric self-phase modulation and self-steepening of pulses in long optical waveguides. Phys. Rev. A 27, 1393 (1983)CrossRefGoogle Scholar
  16. 16.
    Chowdury, A., Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Breather-to-soliton conversions described by the quintic equation of the nonlinear Schrödinger hierarchy. Phys. Rev. E 91, 032928 (2015); Chowdury, A., Krolikowski, W.: Breather-to-soliton transformation rules in the hierarchy of nonlinear Schrödinger equations. Phys. Rev. E 95, 062226 (2017)Google Scholar
  17. 17.
    Backus, S., Durfee III, C.G., Mourou, G., Kapteyn, H.C., Murnane, M.M.: 0.2-TW laser system at 1 kHz. Opt. Lett. 22, 1256 (1997)CrossRefGoogle Scholar
  18. 18.
    Xu, S.-L., Petrović, N., Belić, M.R.: Exact solutions of the (2 + 1)-dimensional quintic nonlinear Schrödinger equation with variable coefficients. Nonlinear Dyn. 80, 583–589 (2015)CrossRefGoogle Scholar
  19. 19.
    Mirzazadeh, M., Eslami, M., Zerrad, E., Mahmood, M.F., Biswas, A., Belić, M.: Optical solitons in nonlinear directional couplers by sine-cosine function method and Bernoulli’s equation approach. Nonlinear Dyn. 81, 1933–1349 (2015)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Biswas, A., Khalique, C.M.: Stationary solutions for nonlinear dispersive Schrödinger equation. Nonlinear Dyn. 63, 623–626 (2011)CrossRefGoogle Scholar
  21. 21.
    Chin, S.A., Ashour, O.A., Belić, M.R.: Anatomy of the Akhmediev breather: cascading instability, first formation time, and Fermi-Pasta-Ulam recurrence. Phys. Rev. E 92, 063202 (2015)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Wu, X.-F., Hua, G.-S., Ma, Z.-Y.: Evolution of optical solitary waves in a generalized nonlinear Schrödinger equation with variable coefficients. Nonlinear Dyn. 70, 2259–2267 (2012)CrossRefGoogle Scholar
  23. 23.
    Trippenbach, M., Band, Y.B.: Effects of self-steepening and self-frequency shifting on short-pulse splitting in dispersive nonlinear media. Phys. Rev. A 57, 4791 (1998)CrossRefGoogle Scholar
  24. 24.
    Potasek, M.J., Tabor, M.: Exact solutions for an extended nonlinear Schrödinger equation. Phys. Lett. A 154, 449 (1991)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Cavalcanti, S.B., Cressoni, J.C., da Cruz, H.R., Gouveia-Neto, A.S.: Modulation instability in the region of minimum group-velocity dispersion of single-mode optical fibers via an extended nonlinear Schrödinger equation. Phys. Rev. A 43, 6162 (1991)CrossRefGoogle Scholar
  26. 26.
    Wang, D.-S., Chen, F., Wen, X.-Y.: Darboux transformation of the general Hirota equation: multisoliton solutions, breather solutions and rogue wave solutions. Adv. Differ. Equ. 2016, 67 (2016)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Guo, R., Hao, H.Q.: Breathers and multi-solitons solutions for the higher-order generalized nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 18, 2426–2435 (2013)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Mani Rajan, M.S., Mahalingam, A.: Nonautonomous solitons in modified inhomogeneous Hirota equation: soliton control and soliton interaction. Nonlinear Dyn. 79, 2469–2484 (2015)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Lan, Z., Gao, B.: Solitons, breather and bound waves for a generalized higher-order nonlinear Schrödinger equation in an optical fiber or a planar waveguide. Eur. Phys. J. Plus 132, 512 (2017)CrossRefGoogle Scholar
  30. 30.
    Chowdury, A., Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Breather solutions of the integrable nonlinear Schrödinger equation and their interactions. Phys. Rev. E 91, 022919 (2015)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Chowdury, A., Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Soliton solutions of an integrable nonlinear Schrödinger equation with quintic terms. Phys. Rev. E 90, 032922 (2014)CrossRefGoogle Scholar
  32. 32.
    Yang, Y., Yan, Z., Malomed, B.A.: Rogue waves, rational solitons, and modulational instability in an integrable fifth-order nonlinear Schrödinger equation. Chaos 25, 103112 (2015)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Chin, S.A., Ashour, O.A., Nikolić, S.N., Belić, M.R.: Maximal intensity higher-order Akhmediev breathers of the nonlinear Schrödinger equation and their systematic generation. Phys. Lett. A 380, 3625–3629 (2016)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Schwalm, W.A.: Lectures on selected topics in mathematical physics: elliptic functions and elliptic integrals. Morgan & Claypool publication as part of IOP Concise Physics, vol. 68, San Rafael, CA, USA. (2015)Google Scholar
  35. 35.
    Nikolić, S.N., Aleksić, N.B., Ashour, O.A., Belić, M.R., Chin, S.A.: Systematic generation of higher-order solitons and breathers of the Hirota equation on different backgrounds. Nonlinear Dyn. 89, 1637–1649 (2017)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Rogue waves and solitons on a cnoidal background. Eur. Phys. J. Spec. Top. 223, 43–62 (2014)CrossRefGoogle Scholar
  37. 37.
    Chin, S.A., Ashour, O.A., Nikolić, S.N., Belić, M.R.: Peak-height formula for higher-order breathers of the nonlinear Schrödinger equation on nonuniform backgrounds. Phys. Rev. E 95, 012211 (2017)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Ashour O.A.: Maximal intensity higher-order breathers of the nonlinear Schrödinger equation on different backgrounds. In: Undergraduate Research Scholars Thesis, Texas A&M University, USA (2017)Google Scholar
  39. 39.
    Wang, L., Zhang, J.-H., Wang, Z.-Q., Liu, C., Li, M., Qi, F.-H., Guo, R.: Breather-to-soliton transitions, nonlinear wave interactions, and modulational instability in a higher-order generalized nonlinear Schrödinger equation. Phys. Rev. E 93, 012214 (2016)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Zhang, J.-H., Wang, L., Liu, C.: Superregular breathers, characteristics of nonlinear stage of modulation instability induced by higher-order effects. Proc. R. Soc. A 473, 20160681 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Stanko N. Nikolić
    • 1
    • 2
    Email author
  • Omar A. Ashour
    • 3
    • 4
  • Najdan B. Aleksić
    • 1
    • 2
  • Milivoj R. Belić
    • 2
  • Siu A. Chin
    • 3
  1. 1.Institute of Physics BelgradeUniversity of BelgradeBelgradeSerbia
  2. 2.Science programTexas A&M University at QatarDohaQatar
  3. 3.Department of Physics and AstronomyTexas A&M UniversityCollege StationUSA
  4. 4.Department of PhysicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations