Tolerant control for non-Gaussian stochastic processes with unknown faults via two-step fuzzy modeling

  • Yang YiEmail author
  • Liren Shao
  • Xiangxiang Fan
  • Tianping Zhang
Original Paper


In this brief, a fault diagnosis (FD) and fault-tolerant control framework is addressed for a class of typical non-Gaussian processes by using two kinds of different fuzzy modeling methods. In order to describe the gray-box dynamics between probability distribution function (PDF) of system output and controlled input, the well-known fuzzy logic systems and the T–S fuzzy models are imported at the same time. Different from some ecumenical results of FD, the PDF of output is assumed to be available rather than output signal itself. By utilizing adaptive projection algorithm, a measurable distribution-based fuzzy diagnostic filter is raised to successfully calculate the state vector and the size of fault. Meanwhile, the dynamical stability of error system can be ensured when non-Gaussian processes exist unknown fault. Moreover, the fault-tolerant controller is provided where not only the diagnostic error but also the system state is retained in a small region. By considering constant and time-varying faults, respectively, a satisfactory simulation result can be achieved to show the effectiveness of designed algorithm.


Non-Gaussian processes T–S fuzzy models Fuzzy logic systems Fault-tolerant control Fuzzy filter 



This work was supported in part by the National Nature Science Foundation of China under Grants (61473249, 61803331), the Nature Science Foundation of Jiangsu Province under Grant (BK2017515), the QingLan Project of Jiangsu Province and the High-end Talent Program of Yangzhou University.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript.


  1. 1.
    Feng, G.: Analysis and Synthesis of Fuzzy Control Systems: Model Based Approach. CRC, Boca Raton (2010)CrossRefGoogle Scholar
  2. 2.
    Tong, S.C., Li, Y.M., Sui, S.: Adaptive fuzzy output feedback control for switched nonstrict-feedback nonlinear systems with input nonlinearities. IEEE Trans. Fuzzy Syst. 24(6), 1426–1440 (2016)CrossRefGoogle Scholar
  3. 3.
    Li, Y.M., Tong, S.C.: Adaptive fuzzy output-feedback stabilization control for a class of switched nonstrict-feedback nonlinear systems. IEEE Trans. Cybern. 47(4), 1007–1016 (2017)CrossRefGoogle Scholar
  4. 4.
    Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 15(1), 116–132 (1985)CrossRefGoogle Scholar
  5. 5.
    Kwon, N.K., Park, I.S., Park, P.K.: \(H_{\infty }\) state-feedback control for continuous-time Markovian jump fuzzy systems using a fuzzy weighting-dependent Lyapunov function. Nonlinear Dyn. 90(3), 2001–2011 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cazarez-Castro, N.R., Aguilar, L.T., Castillo, O.: Designing type-1 and type-2 fuzzy logic controllers via fuzzy Lyapunov synthesis for nonsmooth mechanical systems. Eng. Appl. Artif. Intell. 25(5), 971–979 (2012)CrossRefGoogle Scholar
  7. 7.
    Li, H.Y., Wu, C.W., Wu, L.G., Lam, H.K., Gao, Y.B.: Filtering of interval type-2 fuzzy systems with intermittent measurements. IEEE Trans. Cybern. 46(3), 668–678 (2017)CrossRefGoogle Scholar
  8. 8.
    Li, S.H., Gu, H.: Fuzzy adaptive internal model control schemes for PMSM speed-regulation system. IEEE Trans. Ind. Inform. 8(4), 767–779 (2012)CrossRefGoogle Scholar
  9. 9.
    Wang, F., Liu, Z., Zhang, Y., Chen, X., Philip, C.L.: Adaptive fuzzy dynamic surface control for a class of nonlinear systems with fuzzy dead zone and dynamic uncertainties. Nonlinear Dyn. 79(3), 1693–1790 (2015)CrossRefGoogle Scholar
  10. 10.
    Zhang, T.P., Xia, X.N.: Decentralized adaptive fuzzy output feedback control of stochastic nonlinear large-scale systems with dynamic uncertainties. Inf. Sci. 315, 17–38 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Yi, Y., Fan, X.X., Zhang, T.P.: Anti-disturbance tracking control for systems with nonlinear disturbances using T–S fuzzy modeling. Neurocomputing 171, 1027–1037 (2016)CrossRefGoogle Scholar
  12. 12.
    Yi, Y., Zheng, W.X., Sun, C.Y., Guo, L.: DOB fuzzy controller design for non-Gaussian stochastic distribution systems using two-step fuzzy identification. IEEE Trans. Fuzzy Syst. 24(2), 401–418 (2016)CrossRefGoogle Scholar
  13. 13.
    Wu, L.G., Yang, X.Z., Lam, H.K.: Dissipativity analysis and synthesis for discrete-time T–S fuzzy stochastic systems with time-varying delay. IEEE Trans. Fuzzy Syst. 22(2), 380–394 (2014)CrossRefGoogle Scholar
  14. 14.
    Wu, H.N., Liu, Z.Y., Guo, L.: Robust \(L_{\infty }\)-gain fuzzy disturbance observer-based control design with adaptive bounding for a hypersonic vehicle. IEEE Trans. Fuzzy Syst. 22(6), 1401–1412 (2014)CrossRefGoogle Scholar
  15. 15.
    Zhang, C.Z., Hu, J.F., Qiu, J.B., Chen, Q.J.: Event-triggered nonsynchronized \(H_{\infty }\) filtering for discrete-time T–S fuzzy systems based on piecewise Lyapunov functions. IEEE Trans. Syst. Man Cybern. Syst. 47(8), 2330–2341 (2017)CrossRefGoogle Scholar
  16. 16.
    Ali, M.S., Gunasekaran, N., Ahn, C.K., Shi, P.: Sampled-data stabilization for fuzzy genetic regulatory networks with leakage delays. IEEE/ACM Trans. Comput. Biol. Bioinform. 15(1), 271–285 (2018)CrossRefGoogle Scholar
  17. 17.
    Lan, J.L., Patton, R.J.: Integrated design of fault-tolerant control for nonlinear systems based on fault estimation and T–S fuzzy modeling. IEEE Trans. Fuzzy Syst. 25(5), 1141–1154 (2017)CrossRefGoogle Scholar
  18. 18.
    Ding, J.L., Chai, T.Y., Wang, H.: Offline modeling for product quality prediction of mineral processing using modeling error PDF shaping and entropy minimization. IEEE Trans. Neural Netw. 22(3), 408–419 (2011)CrossRefGoogle Scholar
  19. 19.
    Xu, C.H., Gui, W.H., Yang, C.H., Zhu, H.Q., Lin, Y.Q., Shi, Q.: Flotation process fault detection using output PDF of bubble size distribution. Miner. Eng. 26, 5–12 (2013)CrossRefGoogle Scholar
  20. 20.
    Guo, L., Wang, H.: Stochastic Distribution Control System Design: A Convex Optimization Approach. Springer, Berlin (2010)CrossRefGoogle Scholar
  21. 21.
    Yi, Y., Guo, L., Wang, H.: Constrained PI tracking control for output probability distributions based on two-step neural networks. IEEE Trans. Circuits Syst. 56(7), 1416–1426 (2009)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Yi, Y., Zheng, W.X.: Decentralized PI tracking control for non-Gaussian large-scale interconnected distribution systems. J. Frankl. Inst. 353, 235–255 (2016)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Guo, L., Wang, H.: PID controller design for output PDFs of stochastic systems using linear matrix inequalities. IEEE Trans. Syst. Man Cybern. 35(1), 65–71 (2005)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Ahn, C.K.: Some new results on stability of Takagi–Sugeno fuzzy Hopfield neural networks. Fuzzy Sets Syst. 179(1), 100–111 (2011)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Ding, S.X.: Model-Based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools. Springer, Berlin (2000)Google Scholar
  26. 26.
    Gao, Z.W., Cecati, C., Ding, S.X.: A survey of fault diagnosis and fault-tolerant techniques—part I: fault diagnosis with model-based and signal-based approaches. IEEE Trans. Ind. Electron. 62(6), 3757–3767 (2015)CrossRefGoogle Scholar
  27. 27.
    Dong, H.L., Wang, Z.D., Ding, S.X., Gao, H.J.: On H-infinity estimation of randomly occurring faults for a class of nonlinear time-varying systems with fading channels. IEEE Trans. Autom. Control 61(2), 479–484 (2016)CrossRefGoogle Scholar
  28. 28.
    Yang, H., Jiang, B., Vincent, C.: Fault Tolerant Control Design for Hybrid Systems. Springer, Berlin (2010)CrossRefGoogle Scholar
  29. 29.
    Dong, H.L., Wang, Z.D., Gao, H.J.: Fault detection for Markovian jump systems with sensor saturations and randomly varying nonlinearities. IEEE Trans. Circuits Syst. I 59(10), 2354–2362 (2010)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Wang, H., Lin, W.: Applying observer based FDI techniques to detect faults in dynamic and bounded stochastic distributions. Int. J. Control 73(15), 1424–1436 (2000)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Cheng, Y., Chen, L., Li, T., Du, H.P.: Delay-dependent fault-tolerant shape control for stochastic distribution systems. IEEE Access 6, 12727–12735 (2018)CrossRefGoogle Scholar
  32. 32.
    Cao, S.Y., Yi, Y., Guo, L.: Anti-disturbance fault diagnosis for non-Gaussian stochastic distribution systems with multiple disturbances. Neurocomputing 136, 315–320 (2014)CrossRefGoogle Scholar
  33. 33.
    Guo, L., Wang, H.: Fault detection and diagnosis for general stochastic systems using B-spline expansions and nonlinear filters. IEEE Trans. Circuits Syst. 52(8), 1644–1652 (2005)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Yao, L.N., Qin, J.F., Wang, A.P.: Fault diagnosis and fault-tolerant control for non-gaussian nonlinear stochastic systems using a rational square-root approximation model. IET Control Theory Appl. 7(1), 116–124 (2013)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Yao, L.N., Feng, L.: Fault diagnosis and fault tolerant control for non-Gaussian time-delayed singular stochastic distribution systems. Int. J. Control Autom. Syst. 14(2), 435–442 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.College of Information EngineeringYangzhou UniversityYangzhouPeople’s Republic of China

Personalised recommendations