Advertisement

Desired compensation RISE-based IBVS control of quadrotors for tracking a moving target

  • Ning Liu
  • Xingling ShaoEmail author
Original Paper
  • 54 Downloads

Abstract

To achieve accurate moving target tracking in the presence of multiple disturbances, this paper presents a desired compensation robust integral of the sign of the error (DCRISE) feedback control strategy for quadrotor unmanned aerial vehicles under image-based visual servo (IBVS) framework. For the purpose of effectively regulating the pose and attitude of quadrotor, proper perspective image moments extracted from the defined virtual image plane are chosen as the image features. Then, a DCRISE feedback controller is constructed for the quadrotor, in which a robust integral of the sign of the error method is employed for suppressing the multiple disturbances and a desired compensation-based feedforward control is introduced to address the nonlinearity nature of the system and circumvent the requirements on the availability of linear velocity. It is theoretically proved by the Lyapunov analysis that all the closed-loop tracking errors under the proposed DCRISE-based IBVS control structure are convergent to a small neighborhood around the origin in spite of multiple disturbances. The validity and advantages of the present approach are confirmed through extensive simulations and comparisons.

Keywords

Desired compensation robust integral of the sign of the error (DCRISE) Moving target tracking Quadrotors Image-based visual servo (IBVS) Image moments 

Notes

Acknowledgements

The authors would like to thank the reviewers and the editor for their comments and suggestions that helped to improve the paper significantly.

Funding

This study was funded in part by Shanxi Province Science Foundation for Youths (Grant Nos. 201701D221123, 201601D021067), Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi, North University of China College Fund (Grant No. 2017023), and in part by the National Natural Science Foundation of China under grant (Grant No. 61803348).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Alireza, M., Mahdi, K.: Analysis of key elements to evaluate the performance of a multirotor unmanned aerial–aquatic vehicle. Aerosp. Sci. Technol. (2017).  https://doi.org/10.1016/j.ast.2017.07.046
  2. 2.
    Tomic, T., Schmid, K., Al, E.: Towards a fully autonomous UAV: research platform for indoor and outdoor urban search and rescue. IEEE Robot. Autom. Mag. 19, 46–56 (2012)CrossRefGoogle Scholar
  3. 3.
    Sa, I., Hrabar, S., Corke, P.: Inspection of pole-like structures using a vision controlled vtol uav and shared autonomy. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4819–4826. IEEE (2014)Google Scholar
  4. 4.
    Araar, O., Aouf, N.: Visual servoing of a quadrotor uav for autonomous power lines inspection. In: 22nd Mediterranean Conference of Control and Automation (MED), pp. 18–24 (2014)Google Scholar
  5. 5.
    Babaie, R., Ehyaie, A.F.: Robust optimal motion planning approach to cooperative grasping and transporting using multiple UAVs based on SDRE. Trans. Inst. Meas. Control 39(9), 1391–1408 (2016)CrossRefGoogle Scholar
  6. 6.
    Kim, S., Choi, S., Lee, H., Kim, H.J.: Vision-based collaborative lifting using quadrotor uavs. In: 14th International Conference on Control, Automation and Systems (ICCAS), pp. 69–74 (2014)Google Scholar
  7. 7.
    Zou, L.Y., Li, H.G., Zhao, W., Zhu, L.: Imaged-based visual servo control for a VTOL aircraft. Math. Probl. Eng. 2017, 1–6 (2017)Google Scholar
  8. 8.
    Serra, P., Cunha, R., Hamel, T., Cabecinhas, D., Silvestre, C.: Landing of a quadrotor on a moving target using dynamic image-based visual servo control. IEEE Trans. Control Syst. Technol. 32(6), 1524–1535 (2016)Google Scholar
  9. 9.
    Abdessameud, A., Janabi-Sharifi, F.: Image-based tracking control of VTOL unmanned aerial vehicles. Automatica 53, 111–119 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Shirzadeh, M., Amirkhani, A., Jalali, A., Mosavi, M.R.: An indirect adaptive neural control of a visual-based quadrotor robot for pursuing a moving target. ISA Trans. 59, 290–302 (2015)CrossRefGoogle Scholar
  11. 11.
    Kanellakis, C., Nikolakopoulos, G.: Survey on computer vision for UAVs: current developments and trends. J. Intell. Robot. Syst. 87(1), 141–168 (2017)CrossRefGoogle Scholar
  12. 12.
    Corke, P.: Robotics, Vision and Control: Fundamental Algorithms in MATLAB. Springer, Berlin (2011)CrossRefGoogle Scholar
  13. 13.
    Chaumette, F.: Potential problems of stability and convergence in image-based and position-based visual servoing. Conflu. Vis. Control 237, 66–78 (2007)Google Scholar
  14. 14.
    Chaumette, F., Hutchinson, S.: Visual servo control part I: basic approaches. IEEE Robot. Autom. 13(4), 82–90 (2006)CrossRefGoogle Scholar
  15. 15.
    Ceren, Z., Altug, E.: Image based and hybrid visual servo control of an unmanned aerial vehicle. J. Intell. Robot. Syst. 65, 325–344 (2012)CrossRefGoogle Scholar
  16. 16.
    Hamel, T., Mahony, R.: Image based visual servo control for a class of aerial robotic systems. Automatica 43(11), 1975–1983 (2007)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Wang, F., Liu, Z., Zhang, Y., Chen, C.L.P.: Adaptive robust image-based visual servoing control of robot with unknown actuator hysteresis. Nonlinear Dyn. 85, 547–561 (2016)CrossRefGoogle Scholar
  18. 18.
    Alepuz, J.P., Emami, M.R., Pomares, J.: Direct image-based visual servoing of free-floating space manipulators. Aerosp. Sci. Technol. 55, 1–9 (2016)CrossRefGoogle Scholar
  19. 19.
    Jabbari, H., Oriolo, G., Bolandi, H.: Dynamic IBVS control of an underactuated UAV. In: International Conference on Robotics and Biomimetics, pp. 1158–1163 (2012)Google Scholar
  20. 20.
    Hamel, T., Mahony, R.: Visual servoing of an under-actuated dynamic rigid-body system: an image-based approach. IEEE Trans. Robot. Autom. 18(2), 187–198 (2002)CrossRefGoogle Scholar
  21. 21.
    Mebarki, R., Siciliano, B.: Velocity-free image-based control of unmanned aerial vehicles Rafi. In: IEEE/ASME International Conference, Wollongong, pp. 1522–1527 (2013)Google Scholar
  22. 22.
    Bourquardez, O., Mahony, R., Guenard, N., Chaumette, F., Hamel, T., Eck, L.: Image-based visual servo control of the translation kinematics of a quadrotor aerial vehicle. IEEE Trans. Autom. Robot. 25(3), 743–749 (2009)CrossRefGoogle Scholar
  23. 23.
    Ozawa, R., Chaumette, F.: Dynamic visual servoing with image moments for an unmanned aerial vehicle using a virtual spring approach. Adv. Robot. 27(9), 683–696 (2013)CrossRefGoogle Scholar
  24. 24.
    Zheng, D.L., Wang, H.S., Wang, J.C., Chen, S.H., Chen, W.D., Liang, X.W.: Image-based visual servoing of a quadrotor using virtual camera approach. IEEE/ASME Trans. Mechatron. 22(2), 972–982 (2017)CrossRefGoogle Scholar
  25. 25.
    Xie, H., Lynch, A.F.: Input saturated visual servoing for unmanned aerial vehicles. IEEE Trans./ASME Mechatron. 22(2), 952–960 (2017)CrossRefGoogle Scholar
  26. 26.
    Jia, Z., Yu, J., Mei, Y., et al.: Integral back-stepping sliding mode control for quadrotor helicopter under external uncertain disturbances. Aerosp. Sci. Technol. 68, 299–307 (2017)CrossRefGoogle Scholar
  27. 27.
    Asl, H.J., Oriolo, G., Bolandi, H.: An adaptive scheme for image-based visual servoing of an under-actuated UAV. Int. J. Robot. Autom. 29(1), 91–104 (2014)Google Scholar
  28. 28.
    Modirrousta, A., Khodabandeh, M.: A novel nonlinear hybrid controller design for an uncertain quadrotor with disturbances. Aerosp. Sci. Technol. 45, 294–308 (2015)CrossRefGoogle Scholar
  29. 29.
    Amirkhani, A., Shirzadeh, M., Papageorgiou, E.I., Mosavi, M.R.: Visual-based quadrotor control by means of fuzzy cognitive maps. ISA Trans. 60, 128–142 (2016)CrossRefGoogle Scholar
  30. 30.
    Yang, Y., Yan, Y.: Attitude regulation for unmanned quadrotors using adap-tive fuzzy gain-scheduling sliding mode control. Aerosp. Sci. Technol. 54, 208–217 (2016)CrossRefGoogle Scholar
  31. 31.
    Lopez-Franco, C., Gomez-Avila, J., Alanis, A.Y., Arana-Daniel, N., Villasenor, C.: Visual servoing for an autonomous hexarotor using a neural network based PID controller. Sensors 17(8), 1865 (2017)CrossRefGoogle Scholar
  32. 32.
    Shirzadeh, M., Asl, H.J., Amirkhani, A., Jalali, A.A.: Vision-based control of a quadrotor utilizing artificial neural networks for tracking of moving targets. Eng. Appl. Artif. Intell. 58, 34–48 (2017)CrossRefGoogle Scholar
  33. 33.
    Chen, C.L., Peng, C.C., et al.: High-order sliding mode controller with back-stepping design for aero elastic systems. Commun. Nonlinear Sci. Numer. Simul. 17(4), 1813–1823 (2012)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Chen, N.J., Song, F.J., et al.: An adaptive sliding mode back-stepping control for the mobile manipulator with nonholonomic constraints. Commun. Nonlinear Sci. Numer. Simul. 18(10), 2885–2899 (2013)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Serra, P., Cunha, R., Hamel, T., Silvestre, C., Bras, F.L.: nonlinear image-based visual servo controller for the flare maneuver of fixed-wing aircraft using optical flow. IEEE Trans. Control Syst. Technol. 23(2), 570–583 (2015)CrossRefGoogle Scholar
  36. 36.
    Asl, H.J., Yoon, J.: Robust image-based control of the quadrotor unmanned aerial vehicle. Nonlinear Dyn. 85, 2035–2048 (2016)CrossRefGoogle Scholar
  37. 37.
    Xian, B., Dawson, D.M., et al.: A continuous asymptotic tracking control strategy for uncertain nonlinear systems. IEEE Trans. Autom. Control 49(7), 1206–1211 (2004)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Shao, X.L., Meng, Q.X., Liu, J., Wang, H.L.: RISE and disturbance compensation based trajectory tracking control for a quadrotor UAV without velocity measurements. Aerosp. Sci. Technol. 74, 145–159 (2018)CrossRefGoogle Scholar
  39. 39.
    Yao, J.Y., Deng, W.X., Jiao, Z.X.: RISE-based adaptive control of hydraulic systems with asymptotic tracking. IEEE Trans. Autom. Sci. Eng. 14(3), 1524–1531 (2017)CrossRefGoogle Scholar
  40. 40.
    Grabe, V., Bulthoff, H.H., Scaramuzza, D., Giordano, P.R.: Nonlinear ego-motion estimation from optical flow for online control of a quadrotor UAV. Int. J. Robot. Res. 34(8), 1114–1135 (2015)CrossRefGoogle Scholar
  41. 41.
    Bouabdallah, S.: Design and Control of Quadrotors with Application to Autonomous Flying. École Polytechnique Fédérale de Lausanne, Lausanne (2007)Google Scholar
  42. 42.
    Zuo, Z.: Trajectory tracking control design with command-filtered compensation for a quadrotor. IET Control Theory Appl. 4(11), 2343–2355 (2010)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Tahri, O., Chaumette, F.: Point-based and region-based image moments for visual servoing of planar objects. IEEE Trans. Robot. 21(6), 1116–1127 (2005)CrossRefGoogle Scholar
  44. 44.
    Krstic, M., Kanellakopoulos, I., Kokotovic, P.V.: Nonlinear and Adaptive Control Design. Wiley, New York (1995)zbMATHGoogle Scholar
  45. 45.
    Zhao, C.J., Gong, X., Bai, Y.: Interference and inhibition of lift fluctuation on quadrotor aircraft. Opt. Precis. Eng. 22(9), 2431–2437 (2014)CrossRefGoogle Scholar
  46. 46.
    Shao, X., Liu, J., Cao, H., Shen, C., Wang, H.: Robust dynamic surface trajectory tracking control for a quadrotor UAV via extended state observer. Int. J. Robust Nonlinear Control 28(7), 1–20 (2018)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Shao, X., Liu, N., Liu, J., Wang, H.L.: Model-assisted extended state observer and dynamic surface control-based trajectory tracking for quadrotors via output-feedback mechanism. Int. J. Robust Nonlinear Control 28(1), 1–20 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.School of Instrument and ElectronicsNorth University of ChinaTaiyuanChina
  2. 2.National Key Laboratory for Electronic Measurement TechnologyNorth University of ChinaTaiyuanChina

Personalised recommendations