Advertisement

Low-velocity impact response of geometrically nonlinear functionally graded graphene platelet-reinforced nanocomposite plates

  • Mitao Song
  • Xiaoqian Li
  • Sritawat Kitipornchai
  • Qinsheng Bi
  • Jie YangEmail author
Original Paper
  • 53 Downloads

Abstract

This paper investigates the low-velocity impact response of functionally graded multilayer nanocomposite plates reinforced with a low content of graphene nanoplatelets (GPLs) in which GPLs are randomly oriented and uniformly dispersed in the polymer matrix within each individual layer with GPL weight fraction following a layer-wise variation along the plate thickness. The micromechanics-based Halpin–Tsai model is used to evaluate the effective material properties of the GPL-reinforced composite (GPLRC), and the modified nonlinear Hertz contact theory is utilized to define the contact force between the spherical impactor and the GPLRC target plate. The equations of motion of the plate are derived within the framework of the first-order shear deformation plate theory and von Kármán-type nonlinear kinematics and are solved by a two-step perturbation technique. The present analysis is validated through a direct comparison with those in the open literature. A parametric study is then performed to study the effects of GPL distribution pattern, weight fraction, geometry and size, temperature variation as well as the radius and initial velocity of the impactor on the low-velocity impact response of functionally graded GPLRC plates.

Keywords

Graphene nanoplatelets Functionally graded materials Low-velocity impact The first-order shear deformation plate theory 

Notes

Acknowledgements

This work is fully funded by two research grants from the Australian Research Council under Discovery Project scheme (DP140102132, DP160101978). The authors are grateful for the financial support. Dr. Mitao Song and Prof. Qinsheng Bi are also grateful for the support from the National Natural Science Foundation of China (Grant Nos. 11302087 and 11632008).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z.-Z., Koratkar, N.: Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3(12), 3884–3890 (2009)CrossRefGoogle Scholar
  2. 2.
    Fang, M., Wang, K., Lu, H., Yang, Y., Nutt, S.: Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J. Mater. Chem. 19(38), 7098–7105 (2009)CrossRefGoogle Scholar
  3. 3.
    Zhao, X., Zhang, Q., Chen, D., Lu, P.: Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites. Macromolecules 43(5), 2357–2363 (2010)CrossRefGoogle Scholar
  4. 4.
    Chandra, Y., Chowdhury, R., Scarpa, F., Adhikari, S., Sienz, J., Arnold, C., Murmu, T., Bould, D.: Vibration frequency of graphene based composites: a multiscale approach. Mater. Sci. Eng. B 177(3), 303–310 (2012)CrossRefGoogle Scholar
  5. 5.
    Cranford, S.W.: Buckling induced delamination of graphene composites through hybrid molecular modeling. Appl. Phys. Lett. 102, 031902 (2013)CrossRefGoogle Scholar
  6. 6.
    Rissanou, A.N., Power, A.J., Harmandaris, V.: Structural and dynamical properties of polyethylene/graphene nanocomposites through molecular dynamics simulations. Polymers 7(3), 390–417 (2015)CrossRefGoogle Scholar
  7. 7.
    Rafiee, M.A., Rafiee, J., Yu, Z.-Z., Koratkar, N.: Buckling resistant graphene nanocomposites. Appl. Phys. Lett. 95(22), 223103 (2009)CrossRefGoogle Scholar
  8. 8.
    Song, M.T., Kitipornchai, S., Yang, J.: Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos. Struct. 159, 579–588 (2017)CrossRefGoogle Scholar
  9. 9.
    Feng, C., Kitipornchai, S., Yang, J.: Nonlinear bending of polymer nanocomposite beams reinforced with non-uniformly distributed graphene platelets (GPLs). Compos. B Eng. 110, 132–140 (2017)CrossRefGoogle Scholar
  10. 10.
    Yang, B., Kitipornchai, S., Yang, J.: 3D thermo-mechanical bending solution of functionally graded graphene reinforced circular and annular plates. Appl. Math. Model. 49, 69–86 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Zhao, Z., Feng, C., Wang, Y., Yang, J.: Bending and vibration analysis of functionally graded trapezoidal nanocomposite plates reinforced with graphene nanoplatelets (GPLs). Compos. Struct. 180, 799–808 (2017)CrossRefGoogle Scholar
  12. 12.
    Yang, J., Wu, H.L., Kitipornchai, S.: Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams. Compos. Struct. 161, 111–118 (2017)CrossRefGoogle Scholar
  13. 13.
    Song, M.T., Yang, J., Kitipornchai, S., Zhu, W.D.: Buckling and postbuckling of biaxially compressed functionally graded multilayer graphene nanoplatelet-reinforced polymer composite plates. Int. J. Mech. Sci. 131–132, 345–355 (2017)CrossRefGoogle Scholar
  14. 14.
    Wu, H.L., Kitipornchai, S., Yang, J.: Thermal buckling and postbuckling of functionally graded graphene nanocomposite plates. Mater. Des. 132, 430–441 (2017)CrossRefGoogle Scholar
  15. 15.
    Wu, H.L., Yang, J., Kitipornchai, S.: Dynamic stability of functionally graded multilayer graphene nanocomposite beams in thermal environment. Compos. Struct. 162, 244–254 (2017)CrossRefGoogle Scholar
  16. 16.
    Feng, C., Kitipornchai, S., Yang, J.: Nonlinear free vibration of functionally graded polymer composite beams reinforced with graphene nanoplatelets (GPLs). Eng. Struct. 140, 110–119 (2017)CrossRefGoogle Scholar
  17. 17.
    Chen, D., Yang, J., Kitipornchai, S.: Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams. Compos. Sci. Technol. 142, 235–245 (2017)CrossRefGoogle Scholar
  18. 18.
    Guo, H.L., Cao, S.Q., Yang, T.Z., Chen, Y.S.: Vibration of laminated composite quadrilateral plates reinforced with graphene nanoplatelets using the element-free IMLS-Ritz method. Int. J. Mech. Sci. 142–143, 610–621 (2018)CrossRefGoogle Scholar
  19. 19.
    Guo, H.L., Cao, S.Q., Yang, T.Z., Chen, Y.S.: Geometrically nonlinear analysis of laminated composite quadrilateral plates reinforced with graphene nanoplatelets using the element-free IMLS-Ritz method. Compos. B Eng. 154, 216–224 (2018)CrossRefGoogle Scholar
  20. 20.
    Shen, H.S., Xiang, Y., Lin, F.: Nonlinear bending of functionally graded graphene-reinforced composite laminated plates resting on elastic foundations in thermal environments. Compos. Struct. 170, 80–90 (2017)CrossRefGoogle Scholar
  21. 21.
    Shen, H.S., Xiang, Y., Lin, F.: Thermal buckling and postbuckling of functionally graded graphene-reinforced composite laminated plates resting on elastic foundations. Thin Walled Struct. 118, 229–237 (2017)CrossRefGoogle Scholar
  22. 22.
    Shen, H.S., Xiang, Y., Lin, F.: Nonlinear vibration of functionally graded graphene-reinforced composite laminated plates in thermal environments. Comput. Methods Appl. Mech. Eng. 319(1), 175–193 (2017)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Mirzaei, M., Kiani, Y.: Isogeometric thermal buckling analysis of temperature dependent FG graphene reinforced laminated plates using NURBS formulation. Compos. Struct. 180(15), 606–616 (2017)CrossRefGoogle Scholar
  24. 24.
    Kiani, Y.: NURBS-based isogeometric thermal postbuckling analysis of temperature dependent graphene reinforced composite laminated plates. Thin Walled Struct. 125, 211–219 (2018)CrossRefGoogle Scholar
  25. 25.
    Kiani, Y.: Isogeometric large amplitude free vibration of graphene reinforced laminated plates in thermal environment using NURBS formulation. Comput. Methods Appl. Mech. Eng. 332, 86–101 (2018)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Kiani, Y., Mirzaei, M.: Enhancement of non-linear thermal stability of temperature dependent laminated beams with graphene reinforcements. Compos. Struct. 186, 114–122 (2018)CrossRefGoogle Scholar
  27. 27.
    Sahmani, S., Aghdam, M.M.: Nonlocal strain gradient beam model for nonlinear vibration of prebuckled and postbuckled multilayer functionally graded GPLRC nanobeams. Compos. Struct. 179(1), 77–88 (2017)CrossRefGoogle Scholar
  28. 28.
    Sahmani, S., Aghdam, M.M.: A nonlocal strain gradient hyperbolic shear deformable shell model for radial postbuckling analysis of functionally graded multilayer GPLRC nanoshells. Compos. Struct. 178(15), 97–109 (2017)CrossRefGoogle Scholar
  29. 29.
    Wu, H.Y.T., Springer, G.S.: Impact induced stresses, strains and delaminations in composite plates. J. Compos. Mater. 22(6), 533–560 (1988)CrossRefGoogle Scholar
  30. 30.
    Gong, S.W., Toh, S.L., Shim, V.P.W.: The elastic response of orthotropic laminated cylindrical shells to low-velocity impact. Compos. Eng. 4, 247–266 (1994)CrossRefGoogle Scholar
  31. 31.
    Olsson, R.: Mass criterion for wave controlled impact response of composite plates. Compos. A 31, 879–887 (2000)CrossRefGoogle Scholar
  32. 32.
    Khalili, S.M.R., Malekzadeh, K., Gorgabad, A.V.: Low velocity transverse impact response of functionally graded plates with temperature dependent properties. Compos. Struct. 96, 64–74 (2013)CrossRefGoogle Scholar
  33. 33.
    Kiani, Y., Sadighi, M., Salami, S.J., Eslami, M.R.: Low velocity impact response of thick FGM beams with general boundary conditions in thermal field. Compos. Struct. 104, 293–303 (2013)CrossRefGoogle Scholar
  34. 34.
    Jam, J.E., Kiani, Y.: Low velocity impact response of functionally graded carbon nanotube reinforced composite beams in thermal environment. Compos. Struct. 132, 35–43 (2015)CrossRefGoogle Scholar
  35. 35.
    Shariyat, M., Nasab, F.F.: Low-velocity impact analysis of the hierarchical viscoelastic FGM plates, using an explicit shear-bending decomposition theory and the new DQ method. Compos. Struct. 113, 63–73 (2014)CrossRefGoogle Scholar
  36. 36.
    Song, Z.G., Zhang, L.W., Liew, K.M.: Dynamic responses of CNT reinforced composite plates subjected to impact loading. Compos. B Eng. 99, 154–161 (2016)CrossRefGoogle Scholar
  37. 37.
    Zhang, L.W., Song, Z.G., Qiao, P.Z., Liew, K.M.: Modeling of dynamic responses of CNT-reinforced composite cylindrical shells under impact loads. Comput. Methods Appl. Mech. Eng. 313, 889–903 (2017)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Selim, B.A., Zhang, L.W., Liew, K.M.: Impact analysis of CNT-reinforced composite plates based on Reddy’s higher-order shear deformation theory using an element-free approach. Compos. Struct. 170, 228–242 (2017)CrossRefGoogle Scholar
  39. 39.
    Wang, Z.-X., Xu, J.F., Qiao, P.Z.: Nonlinear low-velocity impact analysis of temperature-dependent nanotube-reinforced composite plates. Compos. Struct. 108, 423–434 (2014)CrossRefGoogle Scholar
  40. 40.
    Fan, Y., Wang, H.: Nonlinear low-velocity impact analysis of matrix cracked hybrid laminated plates containing CNTRC layers resting on visco-Pasternak foundation. Compos. B Eng. 117, 9–19 (2017)CrossRefGoogle Scholar
  41. 41.
    Najafi, F., Shojaeefard, M.H., Googarchin, H.S.: Nonlinear low-velocity impact response of functionally graded plate with nonlinear three-parameter elastic foundation in thermal field. Compos. B Eng. 107, 123–140 (2016)CrossRefGoogle Scholar
  42. 42.
    Najafi, F., Shojaeefard, M.H., Googarchin, H.S.: Low-velocity impact response of functionally graded doubly curved panels with Winkler–Pasternak elastic foundation: an analytical approach. Compos. Struct. 162, 351–364 (2017)CrossRefGoogle Scholar
  43. 43.
    Malekzadeh, P., Dehbozorgi, M.: Low velocity impact analysis of functionally graded carbon nanotubes reinforced composite skew plates. Compos. Struct. 140, 728–748 (2016)CrossRefGoogle Scholar
  44. 44.
    Boroujerdy, M.S., Kiani, Y.: Low velocity impact analysis of composite laminated beams subjected to multiple impacts in thermal field. ZAMM Z. Angew. Math. Mech. 96, 843–856 (2016)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. CRC Press, Boca Raton (2004)CrossRefGoogle Scholar
  46. 46.
    Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)CrossRefGoogle Scholar
  47. 47.
    Yang, S.H., Sun, C.T.: Indentation law for composite laminates. NASA CR-165460 (1981)Google Scholar
  48. 48.
    Shen, H.-S.: A Two-Step Perturbation Method in Nonlinear Analysis of Beams, Plates and Shells. Wiley, New York (2013)CrossRefGoogle Scholar
  49. 49.
    Cash, J.R., Karp, A.H.: A variable order Runge–Kutta method for initial value problems with rapidly varying right-hand sides. ACM Trans. Math. Softw. 16(3), 201–222 (1990)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Chun, L., Lam, K.Y.: Dynamic response of fully-clamped laminated composite plates subjected to low-velocity impact of a mass. Int. J. Solids Struct. 35(11), 963–979 (1998)CrossRefGoogle Scholar
  51. 51.
    Ramirez, F., Heyliger, P.R., Pan, E.: Static analysis of functionally graded elastic anisotropic plates using a discrete layer approach. Compos. B Eng. 37(1), 10–20 (2006)CrossRefGoogle Scholar
  52. 52.
    Shakeri, M., Mirzaeifar, R.: Static and dynamic analysis of thick functionally graded plates with piezoelectric layers using layerwise finite element model. Mech. Adv. Mater. Struct. 16(8), 561–575 (2009)CrossRefGoogle Scholar
  53. 53.
    Aksoylar, C., Omercikoglu, A., Mecitoglu, Z., Omurtag, M.H.: Nonlinear transient analysis of FGM and FML plates under blast loads by experimental and mixed FE methods. Compos. Struct. 94(2), 731–744 (2012)CrossRefGoogle Scholar
  54. 54.
    Yasmin, A., Daniel, I.M.: Mechanical and thermal properties of graphite platelet/epoxy composites. Polymer 45(24), 8211–8219 (2004)CrossRefGoogle Scholar
  55. 55.
    Liu, F., Ming, P., Li, J.: Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys. Rev. B 76(6), 064120 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Faculty of Civil Engineering and MechanicsJiangsu UniversityZhenjiangPeople’s Republic of China
  2. 2.School of Civil EngineeringThe University of QueenslandSt Lucia, BrisbaneAustralia
  3. 3.School of EngineeringRMIT UniversityBundooraAustralia

Personalised recommendations