Advertisement

Nonlinear Dynamics

, Volume 95, Issue 3, pp 2325–2332 | Cite as

Multipole solitons in a cold atomic gas with a parity-time symmetric potential

  • Jia-Xi Cheng
  • Si-Liu XuEmail author
  • Milivoj R. Belić
  • Hong Li
  • Yuan Zhao
  • Wen-Wu Deng
  • Yun-Zhou Sun
Original Paper

Abstract

We investigate the formation and propagation of multipole solitons (MSs) in a cold atomic gas with a parity-time (PT) symmetric potential. A \(\wedge \)-type three-level configuration is considered in the electromagnetically induced transparency arrangement. The PT potential is introduced through an effective magnetic field. Various types of MS solutions are studied theoretically, and the stability analysis of the solutions is discussed numerically, using the modified square-operator method. It is shown that the characteristics of MSs can be easily controlled and manipulated via adjusting the nonlinearity and the external magnetic field parameters.

Keywords

Nonlinear optics Spatial solitons PT-symmetric potential Multipole solitons 

Notes

Acknowledgements

This work is supported in China by the Natural Science Foundation of China (Nos. 11747044, 11747044), Hubei Province technical innovation special major Project (2018ABA076). In addition, work in Qatar is supported by the NPRP 8-028-1-001 Project with the Qatar National Research Fund (a member of the Qatar Foundation). MRB also acknowledges support by the Al Sraiya Holding Group. The authors wish to express thanks to Dr. Yun-Zhou Sun for suggestions.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Human participants

This article does not contain any studies with animals or human participants performed by any of the authors.

References

  1. 1.
    Chen, Z., Segev, M., Christodoulides, D.N.: Optical spatial solitons: historical overview and recent advances. Rep. Prog. Phys. Phys. Soc. 75, 086401–086422 (2012)CrossRefGoogle Scholar
  2. 2.
    Zhu, H.P., Pan, Z.H.: Vortex soliton in (2+1)-dimensional PT-symmetric nonlinear couplers with gain and loss. Nonlinear Dyn. 8, 1325–1330 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Li, P., Li, L., Mihalache, D.: Optical solitons in PT symmetric potentials with cubic–quintic nonlinearity: existence, stability, and dynamics. Romanian Rep. Phys. 70, 408 (2018)Google Scholar
  4. 4.
    Si-Liu, Xu, Nikola, Petrovic, Milivoj, Belic, Zheng-Long, Hu: Light bullet supported by parity-time symmetric potential with power-law nonlinearity. Nonlinear Dyn. 84, 1877–1882 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Dai, Chao-Qing, Zhou, Guo-Quan, Chen, Rui-Pin, Lai, Xian-Jing, Zheng, Jun: Vector multipole and vortex solitons in two-dimensional Kerr media. Nonlinear Dyn. 88, 2629–2635 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Fleischhauer, M., Imamoglu, A., Marangos, J.P.: Electro-magnetically induced transparency: Optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005)CrossRefGoogle Scholar
  7. 7.
    Wu, Y., Deng, L.: Ultraslow optical solitons in a cold four-state medium. Phys. Rev. Lett. 93, 143904–143907 (2004)CrossRefGoogle Scholar
  8. 8.
    Huang, G., Deng, L., Payne, M.G.: Dynamics of ultraslow optical solitons in a cold three-state atomic system. Phys. Rev. E 72, 016617 (2005)CrossRefGoogle Scholar
  9. 9.
    Harris, S.E.: Lasers without inversion: Interference of lifetime-broadened resonances. Phys. Rev. Lett. 62, 1033–1037 (1989)CrossRefGoogle Scholar
  10. 10.
    Kowalski, K., Long, V.C., Nguyen Viet, H., Gateva, S., Glodz, M., Szonert, J.: Simultaneous coupling of three hfs components in a cascade scheme of EIT in cold 85Rb atoms. J. Non Cryst. Solids 355, 1295–1301 (2009)CrossRefGoogle Scholar
  11. 11.
    Brzostowski, B., Cao Long, V., Dinh Xuan, K., Grabiec, B., Vu Ngoc, S., Zaba, A.: EIT four-level lambda scheme of cold rubidium atoms. CMST SI 2, 13–16 (2010)CrossRefGoogle Scholar
  12. 12.
    Khoa, D.X., Doai, L.V., Anh, L.N.M., Trung, L.C., Thuan, P.V., Dung, N.T., Bang, M.H.: Optical bistability in a five-level cascade EIT medium: an analytical approach. J. Opt. Soc. Am. B 33, 735–740 (2016)CrossRefGoogle Scholar
  13. 13.
    Roth, C.J., Becher, T., Frerichs, I., Weiler, N., Wall, W.A.: Coupling of EIT with computational lung modeling for predicting patient-specific ventilator responses. J. Appl. Physiol. 122, 855–867 (2017)CrossRefGoogle Scholar
  14. 14.
    Witkowska-Wrobel, A., Aristovich, K., Faulkner, M., Avery, J., Holder, D.: Feasibility of imaging epileptic seizure onset with EIT and depth electrodes. NeuroImage 173, 311–321 (2018)CrossRefGoogle Scholar
  15. 15.
    Zhou, Y.K., Li, X.Q.: Multifrequency time difference EIT imaging of cardiac activities. Biomed. Signal Process. Control 38, 128–135 (2017)CrossRefGoogle Scholar
  16. 16.
    El-Ganainy, R., Makris, K.G., Christodoulides, D.N., Musslimani, Ziad H.: Theory of coupled optical PT-symmetric structures. Opt. Lett. 32, 17–19 (2007)CrossRefGoogle Scholar
  17. 17.
    Lu, Z., Zhang, Z.M.: Defect solitons in parity-time symmetric superlattices. Opt. Express 19, 11457–11462 (2011)CrossRefGoogle Scholar
  18. 18.
    Abdullaev, F.K., Kartashov, Y.V., Konotop, V.V., Zezyulin, D.A.: Solitons in PT-symmetric nonlinear lattices. Phys. Rev. A 83, 041805–041811 (2011)CrossRefGoogle Scholar
  19. 19.
    Li, C.Y., Huang, C.M., Liu, Haidong, Dong, Liangwei: Multipeaked gap solitons in PT-symmetric optical lattices. Opt. Lett. 37, 4543–4545 (2012)CrossRefGoogle Scholar
  20. 20.
    Guo, A., Salamo, G.J., Duchesne, D., Morandotti, R., Volatier-Ravat, M., Aimez, V., Siviloglou, G.A., Christodoulides, D.N.: Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902–093905 (2009)CrossRefGoogle Scholar
  21. 21.
    Rueter, C.E., Makris, K.G., EI-Ganainy, R., Christodoulodes, D.N., Segev, M., Kip, D.: Observation of parity-time symmetry in optics. Nat. Phys. 6, 192–195 (2010)CrossRefGoogle Scholar
  22. 22.
    Liu, J.Y., Hang, C., Huang, G.X.: Weak-light rogue waves, breathers, and their active control in a cold atomic gas via electromagnetically induced transparency. Phys. Rev. A 93, 063836–063845 (2016)CrossRefGoogle Scholar
  23. 23.
    Si, L.G., Yang, W.X., Lu, X.Y., Hao, X.Y., Yang, X.X.: Formation and propagation of ultraslow three-wave vector optical solitons in a cold seven-level triple-\(\wedge \) atomic system under Raman excitation. Phys. Rev. A 82, 013836–013842 (2010)CrossRefGoogle Scholar
  24. 24.
    Chen, Z., Bai, Z., Li, H., Hang, C., Huang, G.: Storage and retrieval of (3+1)-dimensional weak-light bullets and vortices in a coherent atomic gas. Sci. Rep. 5, 8211–8217 (2015)CrossRefGoogle Scholar
  25. 25.
    Chen, Z., Huang, G.: Trapping of weak signal pulses by soliton and trajectory control in a coherent atomic gas. Phys. Rev. A 89, 033817–033823 (2014)CrossRefGoogle Scholar
  26. 26.
    Chen, Z., Huang, G.: Stern–Gerlach effect of multi-component ultraslow optical solitons via electromagnetically induced transparency. J. Opt. Soc. Am. B 30, 2248–2256 (2013)CrossRefGoogle Scholar
  27. 27.
    Xu, S.L., Petrović, N., Belić, M.R.: Exact solutions of the (2+1)-dimensional quintic nonlinear Schrödinger equation with variable coefficients. Nonlinear Dyn. 80, 583–589 (2015)CrossRefGoogle Scholar
  28. 28.
    Xu, Siliu, Xue, Li, Belić, M.R., He, Jun-Rong: Spatiotemporal soliton clusters in strongly nonlocal media with variable potential coefficients. Nonlinear Dyn. 87, 827–834 (2017)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Xu, Si-Liu, Petrović, N.Z., Belić, M.R., Deng, Wenwu: Exact solutions for the quintic nonlinear Schrödinger equation with time and space. Nonlinear Dyn. 84, 251–259 (2016)CrossRefGoogle Scholar
  30. 30.
    Newell, A.C., Moloney, J.V.: Nonlinear Optics. Addison-Wesley, Redwood City (1992)zbMATHGoogle Scholar
  31. 31.
    Hang, C., Gregory, G., Huang, G.X.: Realization of non-PT -symmetric optical potentials with all-real spectra in a coherent atomic system. Phys. Rev. A 95, 023833 (2017)CrossRefGoogle Scholar
  32. 32.
    Yang, Jianke: Nonlinear Waves in Integrable and Nonintegrable Systems. Siam, Philadelphia (2010)CrossRefzbMATHGoogle Scholar
  33. 33.
    Liu, J., Hang, C., Huang, G.: Weak-light rogue waves, breathers, and their active control in a cold atomic gas via electromagnetically induced transparency. Phys. Rev. A 93, 063836 (2016)CrossRefGoogle Scholar
  34. 34.
    Li, H., Huang, G.: Two-component spatial optical solitons in a four-state ladder system via electromagnetically induced transparency. Phys. Rev. A 372, 4127–4134 (2008)zbMATHGoogle Scholar
  35. 35.
    Chen, Y., Bai, Z., Huang, G.: Ultraslow optical solitons and their storage and retrieval in an ultracold ladder-type atomic system. Phys. Rev. A 89, 023835 (2014)CrossRefGoogle Scholar
  36. 36.
    Yang, Jianke, Lakoba, Taras I.: Universally-convergent squared-operator iteration methods for solitary waves in general nonlinear wave equations. Stud. Appl. Math. 118, 153–197 (2007)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Hu, S., Ma, X., Lu, D., et al.: Solitons supported by complex PT-symmetric Gaussian potentials. Phys. Rev. A 84, 043818 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Jia-Xi Cheng
    • 1
  • Si-Liu Xu
    • 1
    Email author
  • Milivoj R. Belić
    • 2
  • Hong Li
    • 1
  • Yuan Zhao
    • 1
  • Wen-Wu Deng
    • 1
  • Yun-Zhou Sun
    • 3
  1. 1.The School of Electronic and Information EngineeringHubei University of Science and TechnologyXianningChina
  2. 2.Science ProgramTexas A&M University at QatarDohaQatar
  3. 3.Department of PhotoelectricityWuhan Textile UniversityWuhanChina

Personalised recommendations