On the response of MEMS resonators under generic electrostatic loadings: experiments and applications

  • Saad Ilyas
  • Feras K. Alfosail
  • Mohamed L. F. Bellaredj
  • Mohammad I. Younis
Original Paper


We present an investigation of the dynamic behavior of an electrostatically actuated clamped–clamped microbeam, under the simultaneous excitation of primary and subharmonic resonance. The simultaneous excitation of primary and subharmonic resonances of similar strength is experimentally investigated by using different combinations of AC and DC voltages. It is observed that the response of the resonator is governed by a mixed effect of both excitations. Subharmonic-dominated response shows sharp amplitude transitions and smaller monostable regime, while primary-dominated response shows gradual amplitude transition and larger monostable regime. Two potential applications are experimentally demonstrated. The first is a resonator-based MEMS AND logic gate based on AC only subharmonic excitation. The second is a charge sensor based on the transition from subharmonic-dominated response to primary-dominated response, which is potentially capable of detecting a small amount of electric charges.


Clamped–clamped microbeam MEMS logic device MEMS electrometer Primary resonance excitation Subharmonic resonance excitation 



This publication is based upon work supported by the King Abdullah University of Science and Technology (KAUST) office of sponsored research OSR under Award No. OSR-2016-CRG5-3001.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Rhoads, J.F., Shaw, S.W., Turner, K.L.: Nonlinear dynamics and its applications in micro-and nanoresonators. J. Dyn. Syst. Measur. Control 132, 034001 (2010)CrossRefGoogle Scholar
  2. 2.
    Zhang, W., Turner, K.L.: Application of parametric resonance amplification in a single-crystal silicon micro-oscillator based mass sensor. Sens. Actuat. A Phys. 122, 23–30 (2005)CrossRefGoogle Scholar
  3. 3.
    Wadas, M.J., Tweardy, M., Bajaj, N., Murray, A.K., Chiu, G.T.C., Nauman, E.A., Rhoads, J.F.: Detection of traumatic brain injury protein biomarkers with resonant microsystems. IEEE Sens. Lett. 1, 1–4 (2017)CrossRefGoogle Scholar
  4. 4.
    Mahboob, I., Flurin, E., Nishiguchi, K., Fujiwara, A., Yamaguchi, H.: Interconnect-free parallel logic circuits in a single mechanical resonator. Nat. Commun. 2, 198 (2011)CrossRefGoogle Scholar
  5. 5.
    Hafiz, M.A.A., Kosuru, L., Younis, M.I.: Microelectromechanical reprogrammable logic device. Nat. Commun. 7, 11137 (2016)CrossRefGoogle Scholar
  6. 6.
    Guerra, D.N., Bulsara, A.R., Ditto, W.L., Sinha, S., Murali, K., Mohanty, P.: A noise-assisted reprogrammable nanomechanical logic gate. Nano Lett. 10, 1168–1171 (2010)CrossRefGoogle Scholar
  7. 7.
    Ilyas, S., Arevalo, A., Bayes, E., Foulds, I.G., Younis, M.I.: Torsion based universal MEMS logic device. Sens. Actuat. A Phys. 236, 150–158 (2015)CrossRefGoogle Scholar
  8. 8.
    Sinha, N., Jones, T.S., Guo, Z., Piazza, G.: Body-biased complementary logic implemented using AlN piezoelectric MEMS switches. J. Microelectromechanical Syst. 21, 484–496 (2012)CrossRefGoogle Scholar
  9. 9.
    Wong, A.C., Nguyen, C.C.: Micromechanical mixer-filters (mixlers). J. Microelectromechanical Syst. 13, 100–112 (2004)CrossRefGoogle Scholar
  10. 10.
    Ilyas, S., Chappanda, K.N., Younis, M.I.: Exploiting nonlinearities of micro-machined resonators for filtering applications. Appl. Phys. Lett. 110, 253508 (2017)CrossRefGoogle Scholar
  11. 11.
    Kacem, N., Hentz, S., Pinto, D., Reig, B., Nguyen, V.: Nonlinear dynamics of nanomechanical beam resonators: improving the performance of NEMS-based sensors. Nanotechnology 20, 275501 (2009)CrossRefGoogle Scholar
  12. 12.
    Kacem, N., Arcamone, J., Perez-Murano, F., Hentz, S.: Dynamic range enhancement of nonlinear nanomechanical resonant cantilevers for highly sensitive NEMS gas/mass sensor applications. J. Micromec. Microeng. 20, 045023 (2010)CrossRefGoogle Scholar
  13. 13.
    Dick, N., Grutzik, S., Wallin, C.B., Ilic, B.R., Krylov, S., Zehnder, A.T.: Actuation of higher harmonics in large arrays of micromechanical cantilevers for expanded resonant peak separation. J. Vib. Acoust. 140, 051013 (2018)CrossRefGoogle Scholar
  14. 14.
    Westra, H.J.R., Poot, M., Van Der Zant, H.S.J., Venstra, W.J.: Nonlinear modal interactions in clamped–clamped mechanical resonators. Phys. Rev. Lett. 105, 117205 (2010)CrossRefGoogle Scholar
  15. 15.
    Castellanos-Gomez, A., Meerwaldt, H.B., Venstra, W.J., van der Zant, H.S., Steele, G.A.: Strong and tunable mode coupling in carbon nanotube resonators. Phys. Rev. B 86, 041402 (2012)CrossRefGoogle Scholar
  16. 16.
    Li, L.L., Polunin, P.M., Dou, S., Shoshani, O., Scott Strachan, B., Jensen, J.S., Turner, K.L.: Tailoring the nonlinear response of MEMS resonators using shape optimization. Appl. Phys. Lett. 110, 081902 (2017)CrossRefGoogle Scholar
  17. 17.
    Castellanos-Gomez, A., van Leeuwen, R., Buscema, M., van der Zant, H.S., Steele, G.A., Venstra, W.J.: Single-layer MoS2 mechanical resonators. Adv. Mater. 25, 6719–6723 (2013)CrossRefGoogle Scholar
  18. 18.
    Suh, J., LaHaye, M.D., Echternach, P.M., Schwab, K.C., Roukes, M.L.: Parametric amplification and back-action noise squeezing by a qubit-coupled nanoresonator. Nano Lett. 10, 3990–3994 (2010)CrossRefGoogle Scholar
  19. 19.
    Eichler, A., Chaste, J., Moser, J., Bachtold, A.: Parametric amplification and self-oscillation in a nanotube mechanical resonator. Nano Lett. 11, 2699–2703 (2011)CrossRefGoogle Scholar
  20. 20.
    Rhoads, J.F., Shaw, S.W., Turner, K.L., Baskaran, R.: Tunable microelectromechanical filters that exploit parametric resonance. J. Vib. Acoust. 127, 423–430 (2005)CrossRefGoogle Scholar
  21. 21.
    Cassella, C., Strachan, S., Shaw, S.W., Piazza, G.: Phase noise suppression through parametric filtering. Appl. Phys. Lett. 110, 063503 (2017)CrossRefGoogle Scholar
  22. 22.
    Ilyas, S., Ramini, A., Arevalo, A., Younis, M.I.: An experimental and theoretical investigation of a micromirror under mixed-frequency excitation. J. Microelectromechanical Syst. 24, 1124–1131 (2005)CrossRefGoogle Scholar
  23. 23.
    Ilyas, S., Jaber, N., Younis, M.I.: MEMS logic using mixed-frequency excitation. J. Microelectromechanical Syst. 26, 1140–1146 (2017)CrossRefGoogle Scholar
  24. 24.
    Davies, H.G., Rajan, S.: Random superharmonic and subharmonic response: multiple time scaling of a Duffing oscillator. J. Sound Vib. 126, 195–208 (1988)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, London (2011)zbMATHGoogle Scholar
  26. 26.
    Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, London (2008)zbMATHGoogle Scholar
  27. 27.
    Abdel-Rahman, E.M., Nayfeh, A.H.: Secondary resonances of electrically actuated resonant microsensors. J. Micromech. Microeng. 13, 491 (2003)CrossRefGoogle Scholar
  28. 28.
    Nayfeh, A.H.: The response of single degree of freedom systems with quadratic and cubic non-linearities to a subharmonic excitation. J. Sound Vib. 89, 457–470 (1983)CrossRefGoogle Scholar
  29. 29.
    Nayfeh, A.H., Younis, M.I.: Dynamics of MEMS resonators under superharmonic and subharmonic excitations. J. Micromech. Microeng. 15, 1840 (2005)CrossRefGoogle Scholar
  30. 30.
    Nayfeh, A.H.: The response of non-linear single-degree-of-freedom systems to multifrequency excitations. J. Sound Vib. 102, 403–414 (1985)CrossRefGoogle Scholar
  31. 31.
    Younis, M.I., Alsaleem, F.: Exploration of new concepts for mass detection in electrostatically-actuated structures based on nonlinear phenomena. J. Comput. Nonlinear Dyn. 4, 021010 (2009)CrossRefGoogle Scholar
  32. 32.
    Ouakad, H.M., Younis, M.I.: Nonlinear dynamics of electrically actuated carbon nanotube resonators. J. Comput. Nonlinear Dyn. 5, 011009 (2010)CrossRefGoogle Scholar
  33. 33.
    Nayfeh, A.H.: Quenching of primary resonance by a superharmonic resonance. J. Sound Vib. 92, 363–377 (1984)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Jin, Z., Wang, Y.: Electrostatic resonator with second superharmonic resonance. Sens. Actuat. A Phys. 64, 273–279 (1998)CrossRefGoogle Scholar
  35. 35.
    Younis, M.I., Ouakad, H.M., Alsaleem, F.M., Miles, R., Cui, W.: Nonlinear dynamics of MEMS arches under harmonic electrostatic actuation. J. Microelectromechanical Syst. 19, 647–656 (2010)CrossRefGoogle Scholar
  36. 36.
    Alsaleem, F.M., Younis, M.I., Ouakad, H.M.: On the nonlinear resonances and dynamic pull-in of electrostatically actuated resonators. J. Micromech. Microeng. 19, 045013 (2009)CrossRefGoogle Scholar
  37. 37.
    Chappanda, K.N., Ilyas, S., Kazmi, S.N.R., Holguin-Lerma, J., Batra, N.M., Costa, P.M.F.J., Younis, M.I.: A single nano cantilever as a reprogrammable universal logic gate. J. Micromech. Microeng. 27, 045007 (2017)CrossRefGoogle Scholar
  38. 38.
    Kazmi, S.N., Hafiz, M.A., Chappanda, K.N., Ilyas, S., Holguin, J., Costa, P.M., Younis, M.I.: Tunable nanoelectromechanical resonator for logic computations. Nanoscale 9, 3449–3457 (2017)CrossRefGoogle Scholar
  39. 39.
    Wenzler, J.S., Dunn, T., Toffoli, T., Mohanty, P.: A nanomechanical Fredkin gate. Nano Lett. 14, 89–93 (2013)CrossRefGoogle Scholar
  40. 40.
    Jalil, J., Zhu, Y., Ekanayake, C., Ruan, Y.: Sensing of single electrons using micro and nano technologies: a review. Nanotechnology 28, 142002 (2017)CrossRefGoogle Scholar
  41. 41.
    Zhao, J., Ding, H., Xie, J.: Electrostatic charge sensor based on a micromachined resonator with dual micro-levers. Appl. Phys. Lett. 106, 233505 (2015)CrossRefGoogle Scholar
  42. 42.
    Chen, D., Zhao, J., Wang, Y., Xie, J.: An electrostatic charge sensor based on micro resonator with sensing scheme of effective stiffness perturbation. J. Micromech. Microeng. 27, 065002 (2017)CrossRefGoogle Scholar
  43. 43.
    Zhang, H., Huang, J., Yuan, W., Chang, H.: A high-sensitivity micromechanical electrometer based on mode localization of two degree-of-freedom weakly coupled resonators. J. Microelectromechanical Syst. 25, 937–946 (2016)CrossRefGoogle Scholar
  44. 44.
    Younis, M.I.: MEMS Linear and Nonlinear Statics and Dynamics. Springer, Berlin (2011)CrossRefGoogle Scholar
  45. 45.
    Abdel-Rahman, E.M., Younis, M.I., Nayfeh, A.H.: Characterization of the mechanical behavior of an electrically actuated microbeam. J. Micromech. Microeng. 12, 759 (2002)CrossRefGoogle Scholar
  46. 46.
    Younis, M.I., Nayfeh, A.H.: A study of the nonlinear response of a resonant microbeam to an electric actuation. Nonlin. Dynam. 31, 91–117 (2003)CrossRefGoogle Scholar
  47. 47.
    Saghir, S., Bellaredj, M.L., Ramini, A., Younis, M.I.: Initially curved microplates under electrostatic actuation: theory and experiment. J. Micromech. Microeng. 26, 095004 (2016)CrossRefGoogle Scholar
  48. 48.
    Al Hafiz, M.A., Ilyas, S., Ahmed, S., Younis, M.I., Fariborzi, H.: A microbeam resonator with partial electrodes for logic and memory elements. IEEE J. Explor. Solid State Comput. Devices Circuits 3, 83–92 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Physical Sciences and Engineering (PSE)King Abdullah University of Science and TechnologyThuwalKingdom of Saudi Arabia

Personalised recommendations