Advertisement

Combined open-loop and funnel control for underactuated multibody systems

  • Thomas Berger
  • Svenja Otto
  • Timo Reis
  • Robert Seifried
Original Paper
  • 56 Downloads

Abstract

We consider tracking control for multibody systems which are modeled using generalized coordinates. Utilizing the two-degree- of-freedom approach to controller design, we combine a feedforward with a feedback controller. The feedforward control input is computed using the method of servo-constraints, which relies on an inverse model of the system. The feedback control input is generated by a dynamic output feedback which consists of the combination of a funnel controller with a funnel pre-compensator. This feedback controller is model free and hence inherently robust. The control design is restricted to multibody systems with relative degree two or three which have input-to-state stable internal dynamics. In the main result, we prove that the proposed controller is able to guarantee prescribed performance of the tracking error even in the presence of uncertainties and disturbances. We illustrate the application of the control design by a mass on car system (single-input, single-output) and a planar robotic manipulator (two-input, two-output). In the case of relative degree two, these systems contain an unknown friction term.

Keywords

Multibody dynamics Underactuated systems Servo-constraints Feedforward control Funnel control 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11071_2018_4672_MOESM1_ESM.avi (44.1 mb)
Supplementary material 1 (avi 45114 KB)
11071_2018_4672_MOESM2_ESM.avi (42.3 mb)
Supplementary material 2 (avi 43293 KB)
11071_2018_4672_MOESM3_ESM.avi (45.4 mb)
Supplementary material 3 (avi 46480 KB)

References

  1. 1.
    Altmann, R., Betsch, P., Yang, Y.: Index reduction by minimal extension for the inverse dynamics simulation of cranes. Multibody Syst. Dyn. 36(3), 295–321 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Altmann, R., Heiland, J.: Simulation of multibody systems with servo constraints through optimal control. Multibody Syst. Dyn. 40(1), 75–98 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Armstrong-Hélouvry, B., Dupont, P.E., Canudas-de Wit, C.: A survey of models, analysis tools and compensation methods for the control of machines with friction. Automatica 30(7), 1083–1138 (1994)zbMATHCrossRefGoogle Scholar
  4. 4.
    Berger, T.: On differential-algebraic control systems. Ph.D. Thesis, Institut für Mathematik, Technische Universität Ilmenau, Universitätsverlag Ilmenau, Germany (2014)Google Scholar
  5. 5.
    Berger, T., Lê, H.H., Reis, T.: Funnel control for nonlinear systems with known strict relative degree. Automatica 87, 345–357 (2018).  https://doi.org/10.1016/j.automatica.2017.10.017 MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Berger, T., Reis, T.: Zero dynamics and funnel control for linear electrical circuits. J. Frankl. Inst. 351(11), 5099–5132 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Berger, T., Reis, T.: Funnel control via funnel pre-compensator for minimum phase systems with relative degree two. IEEE Trans. Autom. Control 63(7), 2264–2271 (2018).  https://doi.org/10.1109/TAC.2017.2761020 zbMATHCrossRefGoogle Scholar
  8. 8.
    Berger, T., Reis, T.: The funnel pre-compensator. Int. J. Robust Nonlinear Control 28(16), 4747–4771 (2018)zbMATHCrossRefGoogle Scholar
  9. 9.
    Betsch, P., Altmann, R., Yang, Y.: Numerical integration of underactuated mechanical systems subjected to mixed holonomic and servo constraints. In: Font-Llagunes, J.M. (ed.) Multibody Dynamics, Computational Methods in Applied Sciences, vol. 42, pp. 1–18. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-30614-8_1 CrossRefGoogle Scholar
  10. 10.
    Betsch, P., Quasem, M., Uhlar, S.: Numerical integration of discrete mechanical systems with mixed holonomic and control constraints. J. Mech. Sci. Technol. 23(4), 1012–1018 (2009)zbMATHCrossRefGoogle Scholar
  11. 11.
    Blajer, W.: Index of differential-algebraic equations governing the dynamics of constrained mechanical systems. Appl. Math. Model. 16(2), 70–77 (1992)zbMATHCrossRefGoogle Scholar
  12. 12.
    Blajer, W., Kołodziejczyk, K.: A geometric approach to solving problems of control constraints: theory and a DAE framework. Multibody Syst. Dyn. 11(4), 343–364 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Blajer, W., Kołodziejczyk, K.: Improved DAE formulation for inverse dynamics simulation of cranes. Multibody Syst. Dyn. 25(2), 131–143 (2011)CrossRefGoogle Scholar
  14. 14.
    Brenan, K.E., Campbell, S.L., Petzold, L.R.: Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. North-Holland, Amsterdam (1989)Google Scholar
  15. 15.
    Byrnes, C.I., Isidori, A.: A frequency domain philosophy for nonlinear systems, with application to stabilization and to adaptive control. In: Proceedings of 23rd IEEE Conference on Decision and Control, vol. 1, pp. 1569–1573 (1984)Google Scholar
  16. 16.
    Campbell, S.L.: High-index differential algebraic equations. Mech. Struct. Mach. 23(2), 199–222 (1995)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Chen, D., Paden, B.: Stable inversion of nonlinear non-minimum phase systems. Int. J. Control 64(1), 81–97 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Devasia, S., Chen, D., Paden, B.: Nonlinear inversion-based output tracking. IEEE Trans. Autom. Control 41(7), 930–942 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Fumagalli, A., Masarati, P., Morandini, M., Mantegazza, P.: Control constraint realization for multibody systems. J. Comput. Nonlinear Dyn. 6(1), 011,002-011,002-8 (2010)Google Scholar
  20. 20.
    Gear, C.W.: Differential-algebraic equation index transformations. SIAM J. Sci. Stat. Comput. 9, 39–47 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Gross, D., Hauger, W., Schröder, J., Wall, W.: Technische Mechanik 1: Statik, 13th edn. Springer, Berlin (2016)zbMATHCrossRefGoogle Scholar
  22. 22.
    Hackl, C.M.: Non-identifier Based Adaptive Control in Mechatronics-Theory and Application. Lecture Notes in Control and Information Sciences, vol. 466. Springer, Cham (2017)zbMATHGoogle Scholar
  23. 23.
    Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-algebraic Problems, Springer Series in Computational Mathematics, vol. 14, 2nd edn. Springer, Berlin (1996)zbMATHCrossRefGoogle Scholar
  24. 24.
    Ilchmann, A.: Decentralized tracking of interconnected systems. In: Hüper, K., Trumpf, J. (eds.) Mathematical System Theory—Festschrift in Honor of Uwe Helmke on the Occasion of his Sixtieth Birthday, pp. 229–245. CreateSpace, Scotts Valley (2013)Google Scholar
  25. 25.
    Ilchmann, A., Mueller, M.: Time-varying linear systems: relative degree and normal form. IEEE Trans. Autom. Control 52(5), 840–851 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Ilchmann, A., Ryan, E.P.: High-gain control without identification: a survey. GAMM Mitt. 31(1), 115–125 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Ilchmann, A., Ryan, E.P., Sangwin, C.J.: Tracking with prescribed transient behaviour. ESAIM: Control, Optimisation and Calculus of Variations 7, 471–493 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Ilchmann, A., Trenn, S.: Input constrained funnel control with applications to chemical reactor models. Syst. Control Lett. 53(5), 361–375 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Isidori, A.: Nonlinear Control Systems. Communications and Control Engineering Series, 3rd edn. Springer, Berlin (1995)CrossRefGoogle Scholar
  30. 30.
    Kunkel, P., Mehrmann, V.: Differential-Algebraic Equations. Analysis and Numerical Solution. EMS Publishing House, Zürich (2006).  https://doi.org/10.4171/017 zbMATHCrossRefGoogle Scholar
  31. 31.
    Langhaar, H.: Dimensional Analysis and Theory of Models. Wiley, New York (1951)zbMATHGoogle Scholar
  32. 32.
    Leine, R.I., Nijmeijer, H.: Dynamics and Bifurcations of Non-smooth Mechanical Systems. Lecture Notes in Applied and Computational Mechanics, vol. 18. Springer, Berlin (2004)zbMATHCrossRefGoogle Scholar
  33. 33.
    Otto, S., Seifried, R.: Analysis of servo-constraints solution approaches for underactuated multibody systems. In: Proceedings of IMSD Lisbon 2018, Submitted to Proceedings IMSD 2018 (2017)Google Scholar
  34. 34.
    Otto, S., Seifried, R.: Open-loop control of underactuated mechanical systems using servo-constraints: analysis and some examples. Technical Report, Institute of Mechanical and Ocean Engineering, Hamburg University of Technology (2017). (To appear in DAE Forum) Google Scholar
  35. 35.
    Otto, S., Seifried, R.: Real-time trajectory control of an overhead crane using servo-constraints. Multibody Syst. Dyn. 42(1), 1–17 (2018).  https://doi.org/10.1007/s11044-017-9569-4 MathSciNetCrossRefGoogle Scholar
  36. 36.
    Pomprapa, A., Weyer, S., Leonhardt, S., Walter, M., Misgeld, B.: Periodic funnel-based control for peak inspiratory pressure. In: Proceedings of IEEE 54th Annual Conference on Decision and Control, Osaka, Japan, pp. 5617–5622 (2015)Google Scholar
  37. 37.
    Schiehlen, W., Eberhard, P.: Applied Dynamics. Springer, Cham (2014)zbMATHGoogle Scholar
  38. 38.
    Seifried, R.: Integrated mechanical and control design of underactuated multibody systems. Nonlinear Dyn. 67(2), 1539–1557 (2012)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Seifried, R.: Two approaches for feedforward control and optimal design of underactuated multibody systems. Multibody Syst. Dyn. 27, 75–93 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Seifried, R., Blajer, W.: Analysis of servo-constraint problems for underactuated multibody systems. Mech. Sci. 4, 113–129 (2013)CrossRefGoogle Scholar
  41. 41.
    Senfelds, A., Paugurs, A.: Electrical drive DC link power flow control with adaptive approach. In: Proceedings of 55th International Scientific Conference on Power and Electrical Engineering of Riga Technical University, Riga, Latvia, pp. 30–33 (2014)Google Scholar
  42. 42.
    Skogestad, S., Postlethwaite, I.: Multivariable Feedback Control: Analysis and Design, 2nd edn. Wiley, Chichester (2005)zbMATHGoogle Scholar
  43. 43.
    Sontag, E.D.: Smooth stabilization implies coprime factorization. IEEE Trans. Autom. Control 34(4), 435–443 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Sontag, E.D.: On the input-to-state stability property. Eur. J. Control 1, 24–36 (1995)zbMATHCrossRefGoogle Scholar
  45. 45.
    Walter, W.: Ordinary Differential Equations. Springer, New York (1998)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversität HamburgHamburgGermany
  2. 2.Institute of Mechanics and Ocean EngineeringHamburg University of TechnologyHamburgGermany

Personalised recommendations