Nonlinear Dynamics

, Volume 95, Issue 3, pp 1923–1939 | Cite as

Nonlinear effect of biological feedback on brain attentional state

  • Vladimir A. Maksimenko
  • Alexander E. HramovEmail author
  • Vadim V. Grubov
  • Vladimir O. Nedaivozov
  • Vladimir V. Makarov
  • Alexander N. Pisarchik
Original Paper


A nonlinear effect of biological feedback on visual perception is studied when a brain–computer interface is applied. The implemented algorithm for estimation of visual attention is based on the time–frequency analysis of human electroencephalograms in real time by measuring the amplitude of the stimulus-related brain response, which takes subsequently positive and negative values. The analysis shows that time intervals with positive amplitude are associated with periods of sustained attention, whereas time intervals with negative amplitude are related to mental fatigue. The comparison of the results obtained in two groups of subjects, one without feedback and another with feedback, demonstrate that the feedback control prolongs the periods of sustained attention. The largest interval of sustained attention in the former group reached only \(100\pm 20\) s versus \(150\pm 40\) s in the latter group. However, the mean degree of attention, estimated by averaging the brain response amplitude over the whole interval, was 27% lower in the group with feedback than in another group. The obtained results evidence that cognitive resource is limited, and therefore, to maintain high performance for prolonged time, the brain has to work in a “safe-mode” regime.


Visual attention EEG analysis Brain–computer interface Biological feedback 



This work has been supported by the Russian Science Foundation (Grant 17-72-30003) in the part of experimental studies and intelligent control system realization for BCI. V.A.M. thanks President Program (project MK-992.2018.2) for personal support in the part of biological feedback influence analysis. A.N.P. acknowledges support from the Spanish Ministry of Economy and Competitiveness (project SAF2016-80240) in the part of neurophysiological experimental design preparation.

Compliance with ethical standard

Human participants

Subjects participated in the experiment on a voluntary and gratuitous basis. All participants signed an informed medical consent to participate in the experimental work and received all necessary explanations about the process, including their agreement for further publication of the results. Acquired experimental data were processed with respect the confidentiality and anonymity of research respondents. The experimental studies were performed in accordance with the Declaration of Helsinki and approved by the local research Ethics Committee of the Yuri Gagarin State Technical University of Saratov.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Buzsaki, G., Draguhn, A.: Neuronal oscillations in cortical networks. Science 304, 1926–1929 (2004)Google Scholar
  2. 2.
    Maksimenko, V.A., Pavlov, A., Runnova, A.E., Nedaivozov, V., Grubov, V., Koronovskii, A.A., Pchelintseva, S.V., Pitsik, E., Pisarchik, A.N., Hramov, A.E.: Nonlinear analysis of brain activity, associated with motor action and motor imaginary in untrained subjects. Nonlinear Dyn. 91(4), 2803–2817 (2018)Google Scholar
  3. 3.
    Lopes da Silva, F.H., Nunez, P.L., Srinivasan, K.: Electric Fields of the Brain: The Neurophysics of EEG. Oxford University Press, Oxford (2006)Google Scholar
  4. 4.
    Luders, H., Noachtar, S.: Atlas and Classification of Electroencephalography. WB Saunders Co., Philadelphia (2000)Google Scholar
  5. 5.
    Guirao, J.L.G., Luo, A.C.J.: New trends in nonlinear dynamics and chaoticity. Nonlinear Dyn. 84, 1–2 (2016)MathSciNetGoogle Scholar
  6. 6.
    Gao, J., Hu, J., Tung, W.W.: Entropy measures for biological signal analyses. Nonlinear Dyn. 68, 431–444 (2012)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Yan, J., Wang, Y., Ouyang, G., Yu, T., Li, Y., Sik, A., Li, X.: Analysis of electrocorticogram in epilepsy patients in terms of criticality. Nonlinear Dyn. 83, 1909–1917 (2016)MathSciNetGoogle Scholar
  8. 8.
    Daly, D., Pedley, T.A.: Current Practice of Clinical Electroencephalography. Raven Press, New York (1990)Google Scholar
  9. 9.
    Spuler, M.: A high-speed brain-computer interface (BCI) using dry EEG electrodes. PLoS ONE 12(2), 1–12 (2017)Google Scholar
  10. 10.
    Bowsher, K., Civillico, E., Coburn, J., Collinger, J., Contreras-Vidal, J., Denison, T., Donoghue, J., French, J., Getzoff, N., Hochberg, L., et al.: Brain-computer interface devices for patients with paralysis and amputation: a meeting report. J. Neural Eng. 13(2), 023001 (2016)Google Scholar
  11. 11.
    Zhang, Y., Yin, E., Li, F., Zhang, Y., Tanaka, T., Zhao, Q., Cui, Y., Xu, P., Yao, D., Guo, D.: Two-stage frequency recognition method based on correlated component analysis for SSVEP-based BCI. IEEE Trans. Neural Syst. Rehabil. Eng. 26(7), 1314–1323 (2018)Google Scholar
  12. 12.
    Zhang, Y., Guo, D., Li, F., Yin, E., Zhang, Y., Li, P., Zhao, Q., Tanaka, T., Yao, D., Xu, P.: Correlated component analysis for enhancing the performance of SSVEP-based brain-computer interface. IEEE Trans. Neural Syst. Rehabil. Eng. 26(5), 948–956 (2018)Google Scholar
  13. 13.
    Hochberg, L.R., Serruya, M.D., Friehs, G.M., Mukand, J.A., Saleh, M., Caplan, A.H., Branner, A., Chen, D., Penn, R.D., Donoghue, J.P.: Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442, 164–171 (2006)Google Scholar
  14. 14.
    Chaudhary, U., Birbaumer, N., Ramos-Murguialday, A.: Brain-computer interfaces for communication and rehabilitation. Nat. Rev. Neurol. 12, 513–525 (2016)Google Scholar
  15. 15.
    De Nunzio, A.M., Dosen, S., Lemling, S., Markovic, M., Schweisfurth, M.A., Ge, N., Graimann, B., Falla, D., Farina, D.: Tactile feedback is an effective instrument for the training of grasping with a prosthesis at low- and medium-force levels. Exp. Brain Res. 235(8), 2547–2559 (2017)Google Scholar
  16. 16.
    Gonzalez, J., Soma, H., Sekine, M., Yu, W.: Psycho-physiological assessment of a prosthetic hand sensory feedback system based on an auditory display: a preliminary study. J. NeuroEng. Rehabil. 9(33), 1–14 (2012)Google Scholar
  17. 17.
    Raspopovic, S., Capogrosso, M., Petrini, F.M., Bonizzato, M., Rigosa, J., Di Pino, G., Carpaneto, J., Controzzi, M., Boretius, T., Fernndez, E., Granata, G., Oddo, C.M., Citi, L., Ciancio, A.L., Cipriani, C., Carrozza, M.C., Jensen, W., Guglielmelli, E., Stieglitz, T., Rossini, P.M., Micera, S.: Restoring natural sensory feedback in real-time bidirectional hand prostheses. Sci. Transl. Med. 6, 222 (2014)Google Scholar
  18. 18.
    De Pascalis, V., Silveri, A.: Effects of feedback control on EEG alpha asymmetry during covert mental tasks. Int. J. Psychophysiol. 3, 163–170 (1986)Google Scholar
  19. 19.
    Touron, D.R., Hertzog, C.: Accuracy and speed feedback: global and local effects on strategy use. Exp. Aging Res. 40, 332–356 (2014)Google Scholar
  20. 20.
    Yagasaki, K.: Chaos in a pendulum with feedback control. Nonlinear Dyn. 6, 125–142 (1994)Google Scholar
  21. 21.
    Yagasaki, K.: A simple feedback control system: bifurcations of periodic orbits and chaos. Nonlinear Dyn. 9, 391–417 (1996)Google Scholar
  22. 22.
    Yabuno, H.: Bifurcation control of parametrically excited duffing system by a combined linear-plus-nonlinear feedback control. Nonlinear Dyn. 12(3), 263–274 (1997)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Martnez-Zrega, B.E., Pisarchik, A.N., Tsimring, L.S.: Using periodic modulation to control coexisting attractors induced by delayed feedback. Phys. Lett. A 318, 102–111 (2003)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Pisarchik, A.N., Feudel, U.: Control of multistability. Phys. Rep. 540, 167–218 (2014)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Zhu, W.Q., Ying, Z.G., Soong, T.T.: An optimal nonlinear feedback control strategy for randomly excited structural systems. Nonlinear Dyn. 24, 31–51 (2001)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Masoud, Z.N., Nayfeh, A.H.: Sway reduction on container cranes using delayed feedback controller. Nonlinear Dyn. 34, 347–358 (2003)zbMATHGoogle Scholar
  27. 27.
    Bhoir, N., Singh, S.N.: Output feedback modular adaptive control of a nonlinear prototypical wing section. Nonlinear Dyn. 37, 357373 (2004)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Sevilla-Escoboza, R., Pisarchik, A.N., Jaimes-Reategui, R., Huerta-Cuellar, G.: Selective monostability in multi-stable systems. Proc. R. Soc. Lon. A 471(2180), 1–15 (2015)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Sevilla-Escoboza, R., Huerta-Cuellar, G., Jaimes-Reategui, R., Medel-Ruiz, C.I., Castaneda, C.E., Lopez-Mancilla, D., Pisarchik, A.N.: Error-feedback control of multistability. J. Franklin Inst. 354(16), 7346–7358 (2017)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Maksimenko, V.A., Runnova, A.E., Zhuravlev, M.O., Nedaivozov, V., Grubov, V.V., Pchelintseva, S.V., Hramov, A.E., Pisarchik, A.N.: Visual perception affected by motivation and alertness controlled by a noninvasive brain-computer interface. PLoS ONE 12(12), 1–20 (2017)Google Scholar
  31. 31.
    Necker, L.A.: Observations on some remarkable phenomena seen in switzerland; and an optical phenomenon which occurs on viewing of a crystal or geometrical solid. Philos. Mag. 3, 329–343 (1832)Google Scholar
  32. 32.
    Kornmeier, J., Pfaffle, M., Bach, M.: Necker cube: stimulus-related (low-level) and percept-related (high-level) EEG signatures early in occipital cortex. J. Vis. 11(9), 12 (2011)Google Scholar
  33. 33.
    Mathes, B., Strber, D., Stadler, M.A., Basar-Eroglu, C.: Voluntary control of necker cube reversals modulates the EEG delta-and gamma-band response. Neurosci. Lett. 402(1), 145–149 (2006)Google Scholar
  34. 34.
    Pisarchik, A.N., Jaimes-Reategui, R., Magalln-Garcia, C.D.A., Castillo-Morales, C.O.: Critical slowing down and noise-induced intermittency in bistable perception: bifurcation analysis. Biol. Cyber. 108(4), 397–404 (2014)Google Scholar
  35. 35.
    Pisarchik, A.N., Bashkirtseva, I.A., Ryashko, L.: Controlling bistability in a stochastic perception model. Eur. Phys. J. Spec. Top. 224(8), 1477–1484 (2015)Google Scholar
  36. 36.
    Bashkirtseva, I.A., Ryashko, L.: Stochastic sensitivity of a bistable energy model for visual perception. Indian J. Phys. 91(1), 57–62 (2017)Google Scholar
  37. 37.
    Wang, M., Arteaga, D., He, B.J.: Brain mechanisms for simple perception and bistable perception. Proc. Nat. Acad. Sci. 110(35), E3350–E3359 (2013)Google Scholar
  38. 38.
    Mulckhuyse, M., Kelley, T.A., Theeuwes, J., Walsh, V., Lavie, N.: Enhanced visual perception with occipital transcranial magnetic stimulation. Eur. J. Neurosci. 34(8), 1320–1325 (2011)Google Scholar
  39. 39.
    Gleiss, S., Kayser, C.: Acoustic noise improves visual perception and modulates occipital oscillatory states. J. Cogn. Neurosci. 26(4), 699–711 (2014)Google Scholar
  40. 40.
    Laufs, H., Holt, J.L., Elfont, R., Krams, M., Paul, J.S., Krakow, K., Kleinschmidt, A.: Where the BOLD signal goes when alpha EEG leaves. Neuroimage 31(4), 1408–1418 (2006)Google Scholar
  41. 41.
    Niedermeyer, E., Lopes da Silva, F.H. (eds.): Electroencephalography. Basic Principles, Clinical Applications, and Related Fields, 5th edn. Lippincott, Williams & Wilkins, Philadelphia (2005)Google Scholar
  42. 42.
    Hramov, A.E., Maksimenko, V.A., Pchelintseva, S.V., Runnova, A.E., Grubov, V.V., Musatov, V.Y., Zhuravlev, M.O., Koronovskii, A.A., Pisarchik, A.N.: Classifying the perceptual interpretations of a bistable image using EEG and artificial neural networks. Front. Neurosci. 11, 674 (2017)Google Scholar
  43. 43.
    Leopold, D.A., Wilke, M., Maier, A., Logothetis, N.K.: Stable perception of visually ambiguous patterns. Nat. Neurosci. 5(6), 605–609 (2002)Google Scholar
  44. 44.
    Kornmeier, J., Ehn, W., Bigalke, H., Bach, M.: Discontinuous presentation of ambiguous figures: How interstimulus-interval durations affect reversal dynamics and ERPs. Psychophysiol. 44(4), 552–560 (2007)Google Scholar
  45. 45.
    Pavlov, A.N., Hramov, A.E., Koronovskii, A.A., Sitnikova, Y.E., Makarov, V.A., Ovchinnikov, A.A.: Wavelet analysis in neurodynamics. Physics-Uspekhi 55(9), 845–875 (2012)Google Scholar
  46. 46.
    Hramov, A.E., Koronovskii, A.A., Makarov, V.A., Pavlov, A.N., Sitnikova, E.: Wavelets in Neuroscience. Springer, Berlin (2015)zbMATHGoogle Scholar
  47. 47.
    Ogden, T.: Essential Wavelets for Statistical Applications and Data Analysis. Springer, New York (2012)Google Scholar
  48. 48.
    Sitnikova, E., Hramov, A.E., Grubov, V., Koronovsky, A.A.: Time-frequency characteristics and dynamics of sleep spindles in WAG/Rij rats with absence epilepsy. Brain Res. 1543, 290–299 (2014)Google Scholar
  49. 49.
    Maksimenko, V.A., Runnova, A.E., Frolov, N.S., Makarov, V.V., Nedaivozov, V.O., Koronovskii, A.A., Pisarchik, A.N., Hramov, A.E.: Multiscale neural connectivity during human sensory processing in the brain. Phys. Rev. E 97, 052405 (2018)Google Scholar
  50. 50.
    Michalareas, G., Vezoli, J., van Pelt, S., Schoffelen, J.M., Kennedy, H., Fries, P.: Alpha–beta and gamma rhythms subserve feedback and feedforward influences among human visual cortical areas. Neuron 384, 384–397 (2016)Google Scholar
  51. 51.
    Buffalo, E.A., Fries, P., Landman, R., Buschman, T.J., Desimone, R.: Laminar differences in gamma and alpha coherence in the ventral stream. Proc. Natl. Acad. Sci. United States of Am. 108(11), 262–267 (2011)Google Scholar
  52. 52.
    Roy, R.N., Charbonnier, S., Campagne, A., Bonnet, S.: Efficient mental workload estimation using task-independent EEG features. J. Neural Eng. 13, 026019 (2016)Google Scholar
  53. 53.
    Chaudhuri, A., Behan, P.O.: Fatigue and basal ganglia. J. Neurolog. Sci. 179(1–2), 34–42 (2000)Google Scholar
  54. 54.
    Mizuno, K., Tanaka, M., Yamaguti, K., Kajimoto, O., Kuratsune, H., Watanabe, Y.: Mental fatigue caused by prolonged cognitive load associated with sympathetic hyperactivity. Behav. Brain Fun. 7(1), 17 (2011)Google Scholar
  55. 55.
    Bonnefond, A., Doignon-Camus, N., Touzalin-Chretien, P., Dufour, A.: Vigilance and intrinsic maintenance of alert state: an ERP study. Behav. Brain Res. 211(2), 185–190 (2010)Google Scholar
  56. 56.
    Boksem, M.A., Meijman, T.F., Lorist, M.M.: Effects of mental fatigue on attention: an ERP study. Cogn. Brain Res. 25(1), 107–116 (2005)Google Scholar
  57. 57.
    Kato, Y., Endo, H., Kizuka, T.: Mental fatigue and impaired response processes: event-related brain potentials in a go/nogo task. Int. J. Psychophysiol. 72(2), 204–211 (2009)Google Scholar
  58. 58.
    Faber, L.G., Maurits, N.M., Lorist, M.M.: Mental fatigue affects visual selective attention. PloS ONE 7(10), e48,073 (2012)Google Scholar
  59. 59.
    Guo, Z., Chen, R., Zhang, K., Pan, Y., Wu, J.: The impairing effect of mental fatigue on visual sustained attention under monotonous multi-object visual attention task in long durations: an event-related potential based study. PloS ONE 11(9), e0163360 (2016)Google Scholar
  60. 60.
    Klimesch, W.: Eeg alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res. Rev. 29(2–3), 169–195 (1999)Google Scholar
  61. 61.
    Tanaka, M., Shigihara, Y., Ishii, A., Funakura, M., Kanai, E., Watanabe, Y.: Effect of mental fatigue on the central nervous system: an electroencephalography study. Behav. Brain Funct. 8(1), 48 (2012)Google Scholar
  62. 62.
    Zhao, C., Zhao, M., Liu, J., Zheng, C.: Electroencephalogram and electrocardiograph assessment of mental fatigue in a driving simulator. Accid. Anal. Prev. 45, 83–90 (2012)Google Scholar
  63. 63.
    Baars, B.J.: In the theatre of consciousness. global workspace theory, a rigorous scientific theory of consciousness. J. Conscious. Stud. 4(4), 292–309 (1997)Google Scholar
  64. 64.
    Dehaene, S., Kerszberg, M., Changeux, J.P.: A neuronal model of a global workspace in effortful cognitive tasks. Proc. Natl. Acad. Sci. 95(24), 14529–14534 (1998)Google Scholar
  65. 65.
    Finc, K., Bonna, K., Lewandowska, M., Wolak, T., Nikadon, J., Dreszer, J., Duch, W., Kühn, S.: Transition of the functional brain network related to increasing cognitive demands. Hum. Brain Mapp. 38(7), 3659–3674 (2017)Google Scholar
  66. 66.
    Guo, D., Guo, F., Zhang, Y., Li, F., Xia, Y., Xu, P., Yao, D.: Periodic visual stimulation induces resting-state brain network reconfiguration. Front. Comput. Neurosci. 12, 21 (2018)Google Scholar
  67. 67.
    Fox, M.D., Snyder, A.Z., Vincent, J.L., Corbetta, M., Van Essen, D.C., Raichle, M.E.: The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. 102(27), 9673–9678 (2005)Google Scholar
  68. 68.
    Corbetta, M., Shulman, G.L.: Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3(3), 201 (2002)Google Scholar
  69. 69.
    Wojciulik, E., Kanwisher, N.: The generality of parietal involvement in visual attention. Neuron 23(4), 747–764 (1999)Google Scholar
  70. 70.
    Mckiernan, K.A., Kaufman, J.N., Kucera-Thompson, J., Binder, J.R.: A parametric manipulation of factors affecting task-induced deactivation in functional neuroimaging. J. Cogn. Neurosci. 15(3), 394–408 (2003)Google Scholar
  71. 71.
    Marois, R., Ivanoff, J.: Capacity limits of information processing in the brain. Trends in Cogn. Sci. 9(6), 296–305 (2005)Google Scholar
  72. 72.
    Vogel, E.K., Machizawa, M.G.: Neural activity predicts individual differences in visual working memory capacity. Nature 428(6984), 748 (2004)Google Scholar
  73. 73.
    Todd, J.J., Marois, R.: Capacity limit of visual short-term memory in human posterior parietal cortex. Nature 428(6984), 751 (2004)Google Scholar
  74. 74.
    Gross, J., Schmitz, F., Schnitzler, I., Kessler, K., Shapiro, K., Hommel, B., Schnitzler, A.: Modulation of long-range neural synchrony reflects temporal limitations of visual attention in humans. Proc. Natl. Acad. Sci. 101(35), 13050–13055 (2004)Google Scholar
  75. 75.
    Marois, R., Chun, M.M., Gore, J.C.: Neural correlates of the attentional blink. Neuron 28(1), 299–308 (2000)Google Scholar
  76. 76.
    Taya, F., Sun, Y., Babiloni, F., Thakor, N., Bezerianos, A.: Brain enhancement through cognitive training: a new insight from brain connectome. Front. Sys. Neurosci. 9, 44 (2015)Google Scholar
  77. 77.
    Klingberg, T.: Training and plasticity of working memory. Trends Cogn. Sci. 14(7), 317–324 (2010)Google Scholar
  78. 78.
    Jolles, D., Crone, E.A.: Training the developing brain: a neurocognitive perspective. Fron. Hum. Neurosci. 6, 76 (2012)Google Scholar
  79. 79.
    Hempel, A., Giesel, F.L., Garcia Caraballo, N.M., Amann, M., Meyer, H., Wüstenberg, T., Essig, M., Schröder, J.: Plasticity of cortical activation related to working memory during training. Am. J. Psychiatry 161(4), 745–747 (2004)Google Scholar
  80. 80.
    Olesen, P.J., Westerberg, H., Klingberg, T.: Increased prefrontal and parietal activity after training of working memory. Nat. Neurosci. 7(1), 75 (2004)Google Scholar
  81. 81.
    Draganski, B., May, A.: Training-induced structural changes in the adult human brain. Behav. Brain Res. 192(1), 137–142 (2008)Google Scholar
  82. 82.
    Driemeyer, J., Boyke, J., Gaser, C., Büchel, C., May, A.: Changes in gray matter induced by learning-revisited. PloS One 3(7), e2669 (2008)Google Scholar
  83. 83.
    Scholz, J., Klein, M.C., Behrens, T.E., Johansen-Berg, H.: Training induces changes in white-matter architecture. Nat. Neurosci. 12(11), 1370 (2009)Google Scholar
  84. 84.
    Wolf, D., Fischer, F.U., Fesenbeckh, J., Yakushev, I., Lelieveld, I.M., Scheurich, A., Schermuly, I., Zschutschke, L., Fellgiebel, A.: Structural integrity of the corpus callosum predicts long-term transfer of fluid intelligence-related training gains in normal aging. Hum. Brain Mapp. 35(1), 309–318 (2014)Google Scholar
  85. 85.
    Maksimenko, V.A., Lu’uttjohann, A., Makarov, V.V., Goremyko, M.V., Koronovskii, A.A., Nedaivozov, V., Runnova, A.E., van Luijtelaar, G., Hramov, A.E., Boccaletti, S.: Macroscopic and microscopic spectral properties of brain networks during local and global synchronization. Phys. Rev. E 96, 012316 (2017)Google Scholar
  86. 86.
    Rubchinsky, L.L., Park, C., Worth, R.M.: Intermittent neural synchronization in parkinsons disease. Nonlinear Dyn. 68, 329346 (2012)Google Scholar
  87. 87.
    Lehnertz, K.: Epilepsy: Extreme Events in the Human Brain. Springer, Berlin, Heidelberg (2006)Google Scholar
  88. 88.
    Pisarchik, A.N., Grubov, V.V., Maksimenko, V.A., Lttjohann, A., Frolov, N.S., Marqués-Pascual, C., Gonzalez-Nieto, D., Khramova, M., Hramov, A.E.: Extreme events in epileptic EEG of rodents after ischemic stroke. Eur. Phys. J. Spec. Top. 227(7–9), 3921–932 (2018)Google Scholar
  89. 89.
    Kinreich, S., Djalovski, A., Kraus, L., Louzoun, Y., Feldman, R.: Brain-to-brain synchrony during naturalistic social interactions. Sci. Rep. 7(1), 17060 (2017)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Vladimir A. Maksimenko
    • 1
  • Alexander E. Hramov
    • 1
    • 2
    Email author
  • Vadim V. Grubov
    • 1
  • Vladimir O. Nedaivozov
    • 1
  • Vladimir V. Makarov
    • 1
  • Alexander N. Pisarchik
    • 1
    • 3
  1. 1.REC “Artificial Intelligence Systems and Neurotechnology”Yuri Gagarin State Technical University of SaratovSaratovRussia
  2. 2.Faculty of Nonlinear ProcessesSaratov State UniversitySaratovRussia
  3. 3.Center for Biomedical TechnologyTechnical University of MadridMadridSpain

Personalised recommendations