Advertisement

Nonlinear Dynamics

, Volume 95, Issue 3, pp 1903–1921 | Cite as

Geometrically nonlinear vibration of laminated composite cylindrical thin shells with non-continuous elastic boundary conditions

  • Chaofeng LiEmail author
  • Peiyong Li
  • Bingfu Zhong
  • Bangchun Wen
Original Paper

Abstract

The geometrically nonlinear forced vibration response of non-continuous elastic-supported laminated composite thin cylindrical shells is investigated in this paper. Two kinds of non-continuous elastic supports are simulated by using artificial springs, which are point and arc constraints, respectively. By using a set of Chebyshev polynomials as the admissible displacement function, the nonlinear differential equation of motion of the shell subjected to periodic radial point loading is obtained through the Lagrange equations, in which the geometric nonlinearity is considered by using Donnell’s nonlinear shell theory. Then, these equations are solved by using the numerical method to obtain nonlinear amplitude–frequency response curves. The numerical results illustrate the effects of spring stiffness and constraint range on the nonlinear forced vibration of points-supported and arcs-supported laminated composite cylindrical shells. The results reveal that the geometric nonlinearity of the shell can be changed by adjusting the values of support stiffness and distribution areas of support, and the values of circumferential and radial stiffness have a more significant influence on amplitude–frequency response than the axial and torsional stiffness.

Keywords

Non-continuous elastic boundary Geometrically nonlinear Laminated cylindrical shells 

List of symbols

\({{\varvec{A}}}_{ij} \)

The stretching stiffness coefficients

\({\varvec{B}}_{ij} \)

The coupling stiffness coefficients

\({\varvec{C}}\)

Damping matrix

\({\varvec{D}}_{ij} \)

The bending stiffness coefficients

\(E_1,E_2\)

Yong’s modulus in the principal directions

Ei

The error of the non-dimension y-coordinate of \(\hbox {NT}=i\) with respect to \(\hbox {NT}=6\)

\({\varvec{F}}(t)\)

The point harmonic excitation

\(G_{12} \)

Moduli of rigidity

H

Thickness of the shell

\({\varvec{K}}, {\varvec{K}}_{\mathrm{spr}}\)

Stiffness matrix, spring stiffness matrix

L

Length of the shell

\({\varvec{M}}\)

Mass matrix

\({\varvec{M}}_{x},{\varvec{M}}_{\theta },{\varvec{M}}_{x\theta }\)

The moments of the in-plane stresses

N

The number of terms for circumferential wave

\({\varvec{N}}_x,{\varvec{N}}_\theta ,{\varvec{N}}_{x\theta }\)

The force of the in-plane stresses

NA

The number of supported points

NS

The number of supported arcs

NT

The number of terms for Chebyshev polynomials

\({\varvec{Q}}\)

Plane stresses–strain matrix

\({\overline{{\varvec{Q}}}} \)

Transformation stiffness matrix

\({\varvec{Q}}^{\prime }\)

The nonlinear vector

R

Radius of the shell

\({\varvec{T}}_{\mathrm{s}} \)

Transformation matrix

T

Kinetic energy

\({\varvec{T}}_m^*\left( \xi \right) \)

The admissible displacement functions

\(U_\varepsilon , U_{\mathrm{spr}} \)

Strain energy, potential energy

\(\bar{{{\varvec{U}}}}, \bar{{{\varvec{V}}}}, \bar{{{\varvec{W}}}}\)

The mode vector satisfying a boundary condition

\(a_m , b_m , c_m \)

The unknown corresponding coefficients

\(f_0 \)

The amplitude of harmonic excitation

\(k_{u} ,k_{v} ,k_{w} ,k_{\theta }\)

Stiffness of axial, circumferential, radial, rotational spring per unit arc length

\({k}^{\prime }_u ,{k}^{\prime }_v ,{k}^{\prime }_w ,{k}^{\prime }_\theta \)

Stiffness of axial, circumferential, radial, rotational spring

n

The circumferential wave number

\({\varvec{q}}\)

The generalized coordinates

t

Time

uvw

Displacement in the x, \(\theta \), z directions

\(\alpha \)

The total length of supported arcs

\(\beta \)

Angular orientation of fibers

\(\varepsilon _x,\varepsilon _\theta ,\gamma _{x\theta }\)

The strains of the shell

\(\theta \)

The constraint radian

\(\theta _s,\theta '_s\)

The starting and ending radian of the sth arcs

\(\kappa _x,\kappa _\theta ,\kappa _{x\theta }\)

The curvature of the shell

\(\mu _{12},\mu _{21}\)

Poisson’s ratios

\(\xi \)

The non-dimensional axial coordinate

\(\rho \)

Mass density

\(\sigma _{\mathrm{x}} ,\sigma _{\mathrm{y}} ,\tau _{\mathrm{xy}}\)

The stresses of the shell

\(\omega \)

The frequency of harmonic excitation

\(\omega ^{*}\)

The non-dimensional natural frequency

\(\omega _d\)

The natural frequency of the shell

Notes

Acknowledgements

The Project is supported by the China Natural Science Funds (No. 51575093) and the Fundamental Research Funds for the Central Universities (Nos. N160313001 and N170308028).

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

References

  1. 1.
    Leissa, A.W., Nordgren, R.P.: Vibration of shells. J. Appl. Mech. 41(2), 544 (1993)CrossRefGoogle Scholar
  2. 2.
    Qatu, M.S.: Recent research advances in the dynamic behavior of shells: 1989–2000, Part 1: Laminated composite shells. Appl. Mech. Rev. 55(5), 325–350 (2002)CrossRefGoogle Scholar
  3. 3.
    Qatu, M.S., Sullivan, R.W., Wang, W.: Recent research advances on the dynamic analysis of composite shells: 2000–2009. Compos. Struct. 93(1), 14–31 (2010)CrossRefGoogle Scholar
  4. 4.
    Lam, K.Y., Loy, C.T.: Analysis of rotating laminated cylindrical shells by different thin shell theories. J. Sound Vib. 186(1), 23–35 (1995)CrossRefGoogle Scholar
  5. 5.
    Lam, K.Y., Loy, C.T.: Influence of boundary conditions and fibre orientation on the natural frequencies of thin orthotropic laminated cylindrical shells. Compos. Struct. 31(1), 21–30 (1995)CrossRefGoogle Scholar
  6. 6.
    Ip, K.H., Chan, W.K., Tse, P.C., Lai, T.C.: Vibration analysis of orthotropic thin cylindrical shells with free ends by the Rayleigh–Ritz method. J. Sound Vib. 195(1), 117–135 (1996)CrossRefGoogle Scholar
  7. 7.
    Soldatos, K.P., Messina, A.: Vibration studies of cross-ply laminated shear deformable circular cylinders on the basis of orthogonal polynomials. J. Sound Vib. 218(2), 219–243 (1998)CrossRefGoogle Scholar
  8. 8.
    Messina, A., Soldatos, K.P.: Ritz-type dynamic analysis of cross-ply laminated circular cylinders subjected to different boundary conditions. J. Sound Vib. 227(4), 749–768 (1999)CrossRefGoogle Scholar
  9. 9.
    Zhang, X.M.: Vibration analysis of cross-ply laminated composite cylindrical shells using the wave propagation approach. Appl. Acoust. 62(11), 1221–1228 (2001)CrossRefGoogle Scholar
  10. 10.
    Zhang, X.M.: Parametric analysis of frequency of rotating laminated composite cylindrical shells with the wave propagation approach. Comput. Methods Appl. Mech. Eng. 191(19), 2057–2071 (2002)CrossRefGoogle Scholar
  11. 11.
    Shao, Z.S., Ma, G.W.: Free vibration analysis of laminated cylindrical shells by using Fourier series expansion method. J. Thermoplast. Compos. Mater. 20(6), 551–573 (2007)CrossRefGoogle Scholar
  12. 12.
    Jin, G., Ye, T., Chen, Y., Su, Z., Yan, Y.: An exact solution for the free vibration analysis of laminated composite cylindrical shells with general elastic boundary conditions. Compos. Struct. 106(12), 114–127 (2013)CrossRefGoogle Scholar
  13. 13.
    Ye, T., Jin, G., Su, Z., Jia, X.: A unified Chebyshev–Ritz formulation for vibration analysis of composite laminated deep open shells with arbitrary boundary conditions. Arch. Appl. Mech. 84(4), 441–471 (2014)CrossRefGoogle Scholar
  14. 14.
    Song, X., Han, Q., Zhai, J.: Vibration analyses of symmetrically laminated composite cylindrical shells with arbitrary boundaries conditions via Rayleigh-Ritz method. Compos. Struct. 134, 820–830 (2015)CrossRefGoogle Scholar
  15. 15.
    Song, X., Zhai, J., Chen, Y., Han, Q.: Traveling wave analysis of rotating cross-ply laminated cylindrical shells with arbitrary boundaries conditions via Rayleigh–Ritz method. Compos. Struct. 133, 1101–1115 (2015)CrossRefGoogle Scholar
  16. 16.
    Sun, W., Zhu, M., Wang, Z.: Free vibration analysis of a hard-coating cantilever cylindrical shell with elastic constraints. Aerosp. Sci. Technol. 63, 232–244 (2017)CrossRefGoogle Scholar
  17. 17.
    Qin, Z., Chu, F., Jean, Z.U.: Free vibrations of cylindrical shells with arbitrary boundary conditions: a comparison study. Int. J. Mech. Sci. 133, 91–99 (2017)CrossRefGoogle Scholar
  18. 18.
    Chen, Y., Jin, G., Liu, Z.: Free vibration analysis of circular cylindrical shell with non-uniform elastic boundary constraints. Int. J. Mech. Sci. 74(3), 120–132 (2013)CrossRefGoogle Scholar
  19. 19.
    Xie, K., Chen, M., Zhang, L., Xie, D.: Free and forced vibration analysis of non-uniformly supported cylindrical shells through wave based method. Int. J. Mech. Sci. 128, 512–526 (2017)CrossRefGoogle Scholar
  20. 20.
    Ganapathi, M., Varadan, T.K.: Nonlinear free flexural vibrations of laminated circular cylindrical shells. Compos. Struct. 30(1), 33–49 (1995)CrossRefGoogle Scholar
  21. 21.
    Jansen, E.L.: The effect of static loading and imperfections on the nonlinear vibrations of laminated cylindrical shells. J. Sound Vib. 315(4–5), 1035–1046 (2008)CrossRefGoogle Scholar
  22. 22.
    Qu, Y., Long, X., Wu, S., Meng, G.: A unified formulation for vibration analysis of composite laminated shells of revolution including shear deformation and rotary inertia. Compos. Struct. 98(3), 169–191 (2013)CrossRefGoogle Scholar
  23. 23.
    Qu, Y., Hua, H., Meng, G.: A domain decomposition approach for vibration analysis of isotropic and composite cylindrical shells with arbitrary boundaries. Compos. Struct. 95, 307–321 (2013)CrossRefGoogle Scholar
  24. 24.
    Wang, Y.Q., Liang, L., Guo, X.H.: Internal resonance of axially moving laminated circular cylindrical shells. J. Sound Vib. 332(24), 6434–6450 (2013)CrossRefGoogle Scholar
  25. 25.
    Yan, Q.W.: Nonlinear vibration of a rotating laminated composite circular cylindrical shell: traveling wave vibration. Nonlinear Dyn. 77(4), 1693–1707 (2014)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Dey, T., Ramachandra, L.S.: Non-linear vibration analysis of laminated composite circular cylindrical shells. Compos. Struct. 163, 89–100 (2017)CrossRefGoogle Scholar
  27. 27.
    Tang, Q., Li, C., Wen, B.: Analysis on forced vibration of thin-wall cylindrical shell with nonlinear boundary condition. Shock Vib. 2016(2016-2-18), 1–22 (2016)Google Scholar
  28. 28.
    Tang, Q., Li, C., She, H., Wen, B.: Modeling and dynamic analysis of bolted joined cylindrical shell. Nonlinear Dynamics(5), 1–23 (2018)Google Scholar
  29. 29.
    Bich, D.H., Nguyen, N.X.: Nonlinear vibration of functionally graded circular cylindrical shells based on improved Donnell equations. J. Sound Vib. 331(25), 5488–5501 (2012)CrossRefGoogle Scholar
  30. 30.
    Amabili, M., Pellicano, F., Paidoussis, M.: Nonlinear vibrations of simply supported, circular cylindrical shells, coupled to quiescent fluid. J. Fluids Struct. 12(7), 883–918 (1998)CrossRefGoogle Scholar
  31. 31.
    Pellicano, F., Amabili, M., PaïDoussis, M.P.: Effect of the geometry on the non-linear vibration of circular cylindrical shells. Int. J. Non-linear Mech. 37(7), 1181–1198 (2002)CrossRefGoogle Scholar
  32. 32.
    Reddy, J.N., Chandrashekhara, K.: Geometrically non-linear transient analysis of laminated, doubly curved shells. Int. J. Non-linear Mech. 20(2), 79–90 (1985)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.School of Mechanical Engineering and AutomationNortheastern UniversityShenyangChina
  2. 2.Key Laboratory of Vibration and Control of Aero-Propulsion Systems Ministry of Education of ChinaNortheastern UniversityShenyangChina

Personalised recommendations