Advertisement

Nonlinear Dynamics

, Volume 95, Issue 2, pp 1615–1625 | Cite as

Dynamical behavior and synchronization in time-delay fractional-order coupled neurons under electromagnetic radiation

  • Fanqi Meng
  • Xiaoqin Zeng
  • Zuolei WangEmail author
Original Paper

Abstract

The dynamical characteristics and chaotic synchronization of the time-delay fractional-order coupled HR neurons under electromagnetic radiation are investigated in this paper. By numerical analysis, the improved neuron model presents complex dynamical behaviors by adding the fractional order q. Meanwhile, based on Lyapunov stability criterion, Gronwalls inequality, Laplace transform, Mittag–Leffler functions, and linear feedback control technique, some new sufficient conditions are derived to ensure the chaotic synchronization of our proposed neuron model with fractional order q: \(0<q<1\) and \(1<q<2\). Finally, some numerical simulations are exploited to verify the presented theoretical results.

Keywords

Fractional-order Electromagnetic radiation Neuron Synchronization Bifurcation 

Notes

Acknowledgements

The authors are very grateful to the anonymous reviewers for their valuable comments. This work is supported by the National Science Foundation of China (Grant Nos. 51777180, 11771376).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952)Google Scholar
  2. 2.
    Hindmarsh, J.L., Rose, R.: A model of neuronal bursting using three coupled first order differential equations. Soc. Lond. B Biol. 221(1222), 87–102 (1984)Google Scholar
  3. 3.
    FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1(6), 445–466 (1961)Google Scholar
  4. 4.
    Izhikevich, E.M.: Which model to use for cortical spiking neurons? IEEE Trans. Neural Netw. 15(5), 1063–1070 (2004)Google Scholar
  5. 5.
    Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35(1), 193–213 (1981)Google Scholar
  6. 6.
    Storace, M., Linaro, D., de Lange, E.: The Hindmarsh–Rose neuron model: bifurcation analysis and piecewise-linear approximations. Chaos 18(3), 033128 (2008)MathSciNetGoogle Scholar
  7. 7.
    Moujahid, A., d’Anjou, A., Torrealdea, F., Torrealdea, F.: Efficient synchronization of structurally adaptive coupled Hindmarsh–Rose neurons. Chaos Solitons Fractals 44(11), 929–933 (2011)Google Scholar
  8. 8.
    Guo-Dong, R., Gang, W., Jun, M., Yang, C.: Simulation of electric activity of neuron by setting up a reliable neuronal circuit driven by electric autapse. Acta Phys. Sin. 64(5), 058702 (2015)Google Scholar
  9. 9.
    Song, X., Wang, C., Ma, J., Tang, J.: Transition of electric activity of neurons induced by chemical and electric autapses. Sci. China Technol. Sci. 58(6), 1007–1014 (2015)Google Scholar
  10. 10.
    Shi, X., Wang, Z.: Adaptive synchronization of time delay Hindmarsh–Rose neuron system via self-feedback. Nonlinear Dyn. 69(4), 2147–2153 (2012)MathSciNetGoogle Scholar
  11. 11.
    Lakshmanan, S., Lim, C.P., Nahavandi, S., Prakash, M., Balasubramaniam, P.: Dynamical analysis of the Hindmarsh–Rose neuron with time delays. IEEE Trans. Neural Netw. 28(8), 1953–1958 (2017)MathSciNetGoogle Scholar
  12. 12.
    Yi, G., Wang, J., Tsang, K.M., Wei, X., Deng, B., Han, C.: Spike-frequency adaptation of a two-compartment neuron modulated by extracellular electric fields. Biol. Cyber. 109(3), 287–306 (2015)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Ma, J., Mi, L., Zhou, P., Xu, Y., Hayat, T.: Phase synchronization between two neurons induced by coupling of electromagnetic field. Appl. Math. Comput. 307, 321–328 (2017)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Ma, J., Wang, Y., Wang, C., Xu, Y., Ren, G.: Mode selection in electrical activities of myocardial cell exposed to electromagnetic radiation. Chaos Solitons Fractals 99, 219–225 (2017)Google Scholar
  15. 15.
    Ma, J., Wu, F., Wang, C.: Synchronization behaviors of coupled neurons under electromagnetic radiation. Int. J. Mod. Phys. B 31(2), 1650251 (2017)MathSciNetGoogle Scholar
  16. 16.
    Lv, M., Ma, J.: Multiple modes of electrical activities in a new neuron model under electromagnetic radiation. Neurocomputing 205, 375–381 (2016)Google Scholar
  17. 17.
    Lv, M., Wang, C., Ren, G., Ma, J., Song, X.: Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn. 85(3), 1479–1490 (2016)Google Scholar
  18. 18.
    Zhou, J., Chen, T., Xiang, L.: Chaotic lag synchronization of coupled delayed neural networks and its applications in secure communication. Circuits Syst. Signal Process. 24(5), 599–613 (2005)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Yang, T., Chua, L.O.: Impulsive stabilization for control and synchronization of chaotic systems: theory and application to secure communication. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 44(10), 976–988 (1997)MathSciNetGoogle Scholar
  20. 20.
    Cooper, S.: Is whole-culture synchronization biology’s ’perpetual-motion machine’? Trans. Biotechnol. 22(6), 266–269 (2004)Google Scholar
  21. 21.
    Volos, C.K., Kyprianidis, I.M., Stouboulos, I.N.: Image encryption process based on chaotic synchronization phenomena. Signal Process. 93(5), 1328–1340 (2013)Google Scholar
  22. 22.
    Xu, Y., Wang, H., Li, Y., Pei, B.: Image encryption based on synchronization of fractional chaotic systems. Commun. Nonlinear Sci. 19(10), 3735–3744 (2014)MathSciNetGoogle Scholar
  23. 23.
    Johnson, B.B., Dhople, S.V., Hamadeh, A.O., Krein, P.T.: Synchronization of nonlinear oscillators in an LTI electrical power network. IEEE Trans. Circuits I. 61(3), 834–844 (2014)Google Scholar
  24. 24.
    Wang, C., He, Y., Ma, J., Huang, L.: Parameters estimation, mixed synchronization, and antisynchronization in chaotic systems. Complexity 20(1), 64–73 (2014)MathSciNetGoogle Scholar
  25. 25.
    Gray, C.M., König, P., Engel, A.K., Singer, W.: Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338(6213), 334 (1989)Google Scholar
  26. 26.
    Meister, M., Wong, R., Baylor, D.A., Shatz, C.J.: Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science 252(5008), 939–943 (1991)Google Scholar
  27. 27.
    Dhamala, M., Jirsa, V.K., Ding, M.: Transitions to synchrony in coupled bursting neurons. Phys. Rev. Lett. 92(2), 028101 (2004)Google Scholar
  28. 28.
    Wang, Q.Y., Lu, Q.S., Wang, H.X.: Transition to complete synchronization via near-synchronization in two coupled chaotic neurons. Chin. Phys. 14(11), 2189 (2005)Google Scholar
  29. 29.
    Hong, K.S., et al.: Adaptive synchronization of two coupled chaotic Hindmarsh–Rose neurons by controlling the membrane potential of a slave neuron. Appl. Math. Model. 37(4), 2460–2468 (2013)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Hettiarachchi, I.T., Lakshmanan, S., Bhatti, A., Lim, C., Prakash, M., Balasubramaniam, P., Nahavandi, S.: Chaotic synchronization of time-delay coupled Hindmarsh–Rose neurons via nonlinear control. Nonlinear Dyn. 86(2), 1249–1262 (2016)zbMATHGoogle Scholar
  31. 31.
    Wang, Q.Y., Lu, Q.S., Chen, G.R.: Ordered bursting synchronization and complex wave propagation in a ring neuronal network. Physics A 374(2), 869–878 (2007)Google Scholar
  32. 32.
    Roelfsema, P.R., Engel, A.K., König, P., Singer, W.: Visuomotor integration is associated with zero time-lag synchronization among cortical areas. Nature 385(6612), 157 (1997)Google Scholar
  33. 33.
    Tripathi, D., Pandey, S., Das, S.: Peristaltic flow of viscoelastic fluid with fractional maxwell model through a channel. Appl. Math. Comput. 215(10), 3645–3654 (2010)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Rudolf, H.: Applications of Fractional Calculus in Physics. World Scientific, Hackensack (2000)Google Scholar
  35. 35.
    Monje, C.A., Chen, Y., Vinagre, B.M., Xue, D., Feliu-Batlle, V.: Fractional-Order Systems and Controls: Fundamentals and Applications. Springer, London (2010)zbMATHGoogle Scholar
  36. 36.
    Magin, R.L.: Fractional Calculus in Bioengineering. Begell House, Chicago (2006)Google Scholar
  37. 37.
    Anastasio, T.J.: The fractional-order dynamics of brainstem vestibulo-oculomotor neurons. Biol. Cybern. 72(1), 69–79 (1994)Google Scholar
  38. 38.
    Lundstrom, B.N., Higgs, M.H., Spain, W.J., Fairhall, A.L.: Fractional differentiation by neocortical pyramidal neurons. Nature Neurosci. 11(11), 1335 (2008)Google Scholar
  39. 39.
    Jun, D., Guang-jun, Z., Yong, X., Hong, Y., Jue, W.: Dynamic behavior analysis of fractional-order Hindmarsh–Rose neuronal model. Cognit. Neurodyn. 8(2), 167–175 (2014)Google Scholar
  40. 40.
    Xie, Y., Kang, Y., Liu, Y., Wu, Y.: Firing properties and synchronization rate in fractional-order Hindmarsh–Rose model neurons. Sci. China Technol. Sci. 57(5), 914–922 (2014)Google Scholar
  41. 41.
    Moaddy, K., Radwan, A.G., Salama, K.N., Momani, S., Hashim, I.: The fractional-order modeling and synchronization of electrically coupled neuron systems. Comput. Math. Appl. 64(10), 3329–3339 (2012)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Alidousti, J., Ghaziani, R.K.: Spiking and bursting of a fractional order of the modified Fitzhugh–Nagumo neuron model. Math. Models Comput. Simul. 9(3), 390–403 (2017)MathSciNetGoogle Scholar
  43. 43.
    Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)zbMATHGoogle Scholar
  44. 44.
    Velmurugana, G., Rakkiyappan, R., Cao, J.D.: Finite-time synchronization of fractional-order memristor-based neural networks with time delays. Neural Netw. 73, 36–46 (2016)zbMATHGoogle Scholar
  45. 45.
    Aguila-Camacho, N., Duarte-Mermoud, M.A., Gallegos, J.A.: Lyapunov functions for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 19(9), 2951–2957 (2014)MathSciNetGoogle Scholar
  46. 46.
    Liang, S., Wu, R., Chen, L.: Adaptive pinning synchronization in fractional-order uncertain complex dynamical networks with delay. Physica A 444, 49–62 (2016)MathSciNetzbMATHGoogle Scholar
  47. 47.
    Ye, H.P., Gao, J.M., Ding, Y.S.: A generalized gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 328(2), 1075–1081 (2007)MathSciNetzbMATHGoogle Scholar
  48. 48.
    De la Sen, M.: About robust stability of caputo linear fractional dynamic systems with time delays through fixed point theory. Fixed Point Theory Appl. 2011(1), 1–19 (2011)MathSciNetGoogle Scholar
  49. 49.
    Shi, X.R., Wang, Z.L.: Robust chaos synchronization of four-dimensional energy resource system via adaptive feedback control. Nonlinear Dyn. 60(4), 631–637 (2010)zbMATHGoogle Scholar
  50. 50.
    Li, L.L., Liu, Y., Yao, Q.G.: Robust synchronization of chaotic systems using slidingmode and feedback control. J. Zhejiang Univ. Sci. C 15(3), 211–222 (2014)Google Scholar
  51. 51.
    Mobayen, S., Tchier, F.: Composite nonlinear feedback control technique for master/slave synchronization of nonlinear systems. Nonlinear Dyn. 87(3), 1731–1747 (2017)zbMATHGoogle Scholar
  52. 52.
    Zhang, L.Z., Yang, Y.Q., Wang, F., Sui, X.: Lag synchronization for fractional-order memristive neural networks with time delay via switching jumps mismatch. J. Frank. Inst. 355, 1217–1240 (2018)MathSciNetzbMATHGoogle Scholar
  53. 53.
    Kai, D., Ford, N.J., Freed, A.D.: A predictor–corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29(1–4), 3–22 (2002)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Computer and Information Engineering CollegeHohai UniversityNanjingPeople’s Republic of China
  2. 2.School of Mathematics and StatisticsYancheng Teachers UniversityYanchengPeople’s Republic of China

Personalised recommendations