Nonlinear Dynamics

, Volume 95, Issue 2, pp 1347–1360 | Cite as

Fractional-order sliding mode control of uncertain QUAVs with time-varying state constraints

  • Changchun HuaEmail author
  • Jiannan Chen
  • Xinping Guan
Original Paper


In this paper, a novel robust fractional-order sliding mode (FOSM)-based state constrained control scheme is designed for uncertain quadrotor UAVs (QUAVs). Model uncertainties and wind gust disturbances are taken into consideration. Under the presented framework, the overall QUAV system is decoupled into translational subsystem and rotational subsystem. These two subsystems are connected to each other through common attitude extraction algorithms. For translational subsystem, the robust state variables constrained controller is designed to ensure the position state variables within the given time-varying constraints. For the rotational subsystem, a new robust FOSM controller is constructed to track the desired attitudes with better performances. Finally, the system is proved to be asymptotically stable, and both simulation and experiment results are conducted to validate the feasibility and effectiveness of the proposed control scheme.


Fractional-order sliding mode State constrained control Uncertainty Wind gust disturbances 



This work was partially supported by National Natural Science Foundation of China (61825304, 61751309, 61673335, 61603329), Basic Research Program of Hebei Province (F2016203467).

Compliance with ethical standards

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship and/or publication of this article.


  1. 1.
    Lim, H., Park, J., Lee, D., Kim, H.J.: Build your own quadrotor: open-source projects on unmanned aerial vehicles. IEEE Robot. Autom. Mag. 19(3), 33–45 (2012)CrossRefGoogle Scholar
  2. 2.
    Institute for Visual Computing, Swiss Federal Institute of Technology in Zurich. (2015). PX4 Autopilot. [Online]. Accessed March 25 (2015)
  3. 3.
    Bouabdallah, S., Siegwart, R.: Full control of a quadrotor. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 153–158 (2007)Google Scholar
  4. 4.
    Kendoul, F., Fantoni, I., Lozano, R.: Asymptotic stability of hierarchical inner-outer loop-based flight controllers. In: Proceedings of the 17th IFAC World Congress, Seoul, Korea, pp. 1741–1746 (2008)Google Scholar
  5. 5.
    Hao, W., Xian, B.: Nonlinear adaptive fault-tolerant control for a quadrotor UAV based on immersion and invariance methodology. Nonlinear Dyn. 90(4), 2813–2826 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chen, F., Lei, W., Zhang, K., Tao, G., Jiang, B.: A novel nonlinear resilient control for a quadrotor UAV via backstepping control and nonlinear disturbance observer. Nonlinear Dyn. 85(2), 1281–1295 (2016)CrossRefzbMATHGoogle Scholar
  7. 7.
    Li, S., Wang, Y., Tan, J.: Adaptive and robust control of quadrotor aircrafts with input saturation. Nonlinear Dyn. 89(1–2), 1–11 (2017)CrossRefzbMATHGoogle Scholar
  8. 8.
    Das, A., Subbarao, K., Lewis, F.: Dynamic inversion with zero dynamics stabilization for quadrotor control. IET Control Theory Appl. 3(3), 303–314 (2009)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Kendoul, F., Lara, D., Fantoni-Coichot, I., Lozano, R.: Real-time nonlinear embedded control for an autonomous quadrotor helicopter. J. Guid. Control Dyn. 30(4), 1049–1061 (2007)CrossRefGoogle Scholar
  10. 10.
    Tian, B., Liu, L., Lu, H., Zuo, Z., Zong, Q., Zhang, Y.: Multivariable finite time attitude control for quadrotor uav: theory and experimentation. IEEE Trans. Ind. Electron. (2017).
  11. 11.
    Lunni, D., Santamaria-Navarro, A., Rossi, R., Rocco, P., Bascetta, L., Andrade-Cetto, J.: Nonlinear model predictive control for aerial manipulation. In: International Conference on Unmanned Aircraft Systems, Miami, FL, pp. 87–93 (2017)Google Scholar
  12. 12.
    Bertrand, S., Guenard, N., Hamel, T., Piet-Lahanier, H., Ec, L.: A hierarchical controller for miniature VTOL UAVs: design and stability analysis using singular perturbation theory. Control Eng. Pract. 19(10), 1099–1108 (2011)CrossRefGoogle Scholar
  13. 13.
    Johnson, E.N., Kannan, S.K.: Adaptive trajectory control for autonomous helicopters. J. Guid. Control Dyn. 28(3), 524–538 (2005)CrossRefGoogle Scholar
  14. 14.
    Liu, H., Li, D., Zuo, Z.: Robust three-loop trajectory tracking control for quadrotors with multiple uncertainties. IEEE Trans. Ind. Electron. 63(4), 2263–2274 (2016)Google Scholar
  15. 15.
    Liu, H., Zhao, W., Zuo, Z.: Robust control for quadrotors with multiple time-varying uncertainties and delays. IEEE Trans. Ind. Electron. 64(4), 1303–1312 (2016)Google Scholar
  16. 16.
    Tanaka, K., Ohtake, H., Wang, H.O.: A practical design approach to stabilization of a 3-DOF RC helicopter. IEEE Trans. Control Syst. Technol. 12(2), 315–325 (2004)CrossRefGoogle Scholar
  17. 17.
    Zuo, Z.: Augmented L1 adaptive tracking control of quad-rotor unmanned aircrafts. IEEE Trans. Aerosp. Electron. Syst. 50(4), 3090–3101 (2014)CrossRefGoogle Scholar
  18. 18.
    Bechlioulis, C.P., Karras, G.C., Heshmati-Alamdari, S., Kyriakopoulos, K.J.: Trajectory tracking with prescribed performance for underactuated underwater vehicles under model uncertainties and external disturbances. IEEE Trans. Control Syst. Technol. 25(2), 429–440 (2017)CrossRefGoogle Scholar
  19. 19.
    Cao, N., Lynch, A.F.: Inner–outer loop control for quadrotor UAVs with input and state constraints. IEEE Trans. Control Syst. Technol. 24(5), 1797–1804 (2016)CrossRefGoogle Scholar
  20. 20.
    Zhong, J., Li, L.: Tuning fractional-order \({PI}^{\lambda }{D}^{\mu }\) controllers for a solid-core magnetic bearing system. IEEE Trans. Control Syst. Technol. 23(4), 1648–1656 (2015)CrossRefGoogle Scholar
  21. 21.
    Padula, F., Visioli, A.: Optimal tuning rules for proportional-integral-derivative and fractional-order proportional-integral-derivative controllers for integral and unstable processes. IET Control Theory Appl. 6(6), 776–786 (2012)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Charef, A., Assaba, M., Ladaci, S., Loiseau, J.J.: Fractional order adaptive controller for stabilized systems via high-gain feedback. IET Control Theory Appl. 7(6), 822–828 (2013)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Yin, C., Chen, Y.Q., Zhong, S.M.: Fractional-order sliding mode based extremum seeking control of a class of nonlinear systems. Automatica 50(12), 3173–3181 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Yin, C., Stark, B., Chen, Y.Q., Zhong, S.M., Lau, E.: Fractional-order adaptive minimum energy cognitive lightening control strategy for the hybrid lightening system. Energy Build. 87, 176–184 (2015)CrossRefGoogle Scholar
  25. 25.
    Pisano, A., Rapaic, M.R., Jelicic, Z.D., Usai, E.: Sliding mode control approaches to the robust regulation of linear multivariable fractional-order dynamics. Int. J. Robust Nonlinear Control 20(18), 2045–2056 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Chen, L., Wu, R., He, Y., Chai, Y.: Adaptive sliding-mode control for fractional-order uncertain linear systems with nonlinear disturbances. Nonlinear Dyn. 80(1–2), 51–58 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Si-Ammour, A., Djennoune, S., Bettayeb, M.: A sliding mode control for linear fractional systems with input and state delays. Commun. Nonlinear Sci. Numer. Simul. 14(5), 2310–2318 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Dadras, S., Momeni, H.R.: Control of a fractional-order economical system via sliding mode. Phys. A Stat. Mech. Appl. 389(12), 2434–2442 (2010)CrossRefGoogle Scholar
  29. 29.
    Chen, D.Y., Liu, Y.X., Ma, X.Y., Zhang, R.F.: Control of a class of fractional-order chaotic systems via sliding mode. Nonlinear Dyn. 67(1), 893–901 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Yin, C., Zhong, S.M., Chen, W.F.: Design of sliding mode controller for a class of fractional-order chaotic systems. Commun. Nonlinear Sci. Numer. Simul. 17(1), 356–366 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Dadras, S., Momeni, H.R.: Fractional terminal sliding mode control design for a class of dynamical systems with uncertainty. Commun. Nonlinear Sci. Numer. Simul. 17(1), 367–377 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Aghababa, M.P.: Design of a chatter-free terminal sliding mode controller for nonlinear fractional-order dynamical systems. Int. J. Control 86(10), 1744–1756 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Nikdel, N., Badamchizadeh, M., Azimirad, V., Nazari, M.A.: Fractional-order adaptive backstepping control of robotic manipulators in the presence of model uncertainties and external disturbances. IEEE Trans. Ind. Electron. 63(10), 6249–6256 (2016)CrossRefGoogle Scholar
  34. 34.
    Li, Y., Chen, Y.Q., Podlubny, I.: Mittag–Leffler stability of fractional order nonlinear dynamic systems. Automatica 45(8), 1965–1969 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Tee, K.P., Ren, B., Ge, S.S.: Control of nonlinear systems with time-varying output constraints. Automatica 47(11), 2511–2516 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Nojavanzadeh, D., Badamchizadeh, M.: Adaptive fractional-order non-singular fast terminal sliding mode control for robot manipulators. IET Control Theory Appl. 10(13), 1565–1572 (2016)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Zhang, F., Li, C.: Stability analysis of fractional differential systems with order lying in (1,2). Adv. Differ. Equ. 2011(1), 1–17 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Institute of Electrical EngineeringYanshan UniversityQinhuangdaoChina
  2. 2.School of Electronics, Information and Electric EngineeringShanghai Jiaotong UniversityShanghaiChina

Personalised recommendations