Advertisement

Nonlinear Dynamics

, Volume 95, Issue 2, pp 1301–1321 | Cite as

Two-to-one internal resonance of an inclined marine riser under harmonic excitations

  • Feras K. Alfosail
  • Mohammad I. YounisEmail author
Original Paper
  • 133 Downloads

Abstract

In this paper, we study the two-to-one internal resonance of an inclined marine riser under harmonic excitations. The riser is modeled as an Euler–Bernoulli beam accounting for mid-plane stretching, self-weight, and an applied axial top tension. Due to the inclination, the self-weight load causes a static deflection of the riser, which can tune the frequency ratio between the third and first natural frequencies near two. The multiple-time-scale method is applied to study the nonlinear equation accounting for the system nonlinearity. The solution is then compared to a Galerkin solution showing good agreement. A further investigation is carried out by plotting the frequency response curves, the force response curves, and the steady-state response of the multiple-time-scale solution, in addition to the dynamical solution obtained by Galerkin, as they vary with the detuning parameters. The results reveal that the riser vibrations can undergo multiple Hopf bifurcations and experience quasi-periodic motion that can lead to chaotic behavior. These phenomena lead to complex vibrations of the riser, which can accelerate its fatigue failure.

Keywords

Harmonic excitation Internal resonance Marine riser Two-to-one 

Notes

Acknowledgements

We acknowledge the financial support of King Abdullah University of Science and Technology and Saudi Aramco.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

Supplementary material

11071_2018_4630_MOESM1_ESM.docx (338 kb)
Supplementary material 1 (docx 337 KB)
11071_2018_4630_MOESM2_ESM.avi (48.5 mb)
Supplementary material 2 (avi 49654 KB)
11071_2018_4630_MOESM3_ESM.avi (48.5 mb)
Supplementary material 3 (avi 49654 KB)

References

  1. 1.
    Païdoussis, M.P., Price, S.J., De Langre, E.: Fluid-Structure Interactions: Cross-Flow-Induced Instabilities. Cambridge University Press, Cambridge (2010)CrossRefzbMATHGoogle Scholar
  2. 2.
    Lacarbonara, W., Arafat, H.N., Nayfeh, A.H.: Non-linear interactions in imperfect beams at veering. Int. J. Non-Linear Mech. 40(7), 987–1003 (2005).  https://doi.org/10.1016/j.ijnonlinmec.2004.10.006 CrossRefzbMATHGoogle Scholar
  3. 3.
    Öz, H.R., Pakdemirli, M.: Two-to-one internal resonances in a shallow curved beam resting on an elastic foundation. Acta Mech. 185(3), 245–260 (2006).  https://doi.org/10.1007/s00707-006-0352-5 CrossRefzbMATHGoogle Scholar
  4. 4.
    Nayfeh, A.H., Lacarbonara, W., Chin, C.-M.: Nonlinear normal modes of buckled beams: three-to-one and one-to-one internal resonances. Nonlinear Dyn. 18(3), 253–273 (1999).  https://doi.org/10.1023/A:1008389024738 MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chin, C., Nayfeh, A., Lacarbonara, W.: Two-to-one internal resonances in parametrically excited buckled beams. In: Proceedings of the 38th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials, pp. 7–10 (1997)Google Scholar
  6. 6.
    Chin, C.-M., Nayfeh, A.H.: Three-to-one internal resonances in hinged-clamped beams. Nonlinear Dyn. 12(2), 129–154 (1997).  https://doi.org/10.1023/A:1008229503164 MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Benedettini, F., Rega, G., Vestroni, F.: Modal coupling in the free nonplanar finite motion of an elastic cable. Meccanica 21(1), 38–46 (1986).  https://doi.org/10.1007/bf01556315 CrossRefzbMATHGoogle Scholar
  8. 8.
    Perkins, N.C.: Modal interactions in the non-linear response of elastic cables under parametric/external excitation. Int. J. Non-Linear Mech. 27(2), 233–250 (1992).  https://doi.org/10.1016/0020-7462(92)90083-J CrossRefzbMATHGoogle Scholar
  9. 9.
    Gattulli, V., Lepidi, M., Macdonald, J.H.G., Taylor, C.A.: One-to-two global-local interaction in a cable-stayed beam observed through analytical, finite element and experimental models. Int. J. Non-Linear Mech. 40(4), 571–588 (2005).  https://doi.org/10.1016/j.ijnonlinmec.2004.08.005 CrossRefzbMATHGoogle Scholar
  10. 10.
    Srinil, N., Rega, G.: Two-to-one resonant multi-modal dynamics of horizontal/inclined cables. Part II: internal resonance activation, reduced-order models and nonlinear normal modes. Nonlinear Dyn. 48(3), 253–274 (2007).  https://doi.org/10.1007/s11071-006-9087-z CrossRefzbMATHGoogle Scholar
  11. 11.
    Srinil, N., Rega, G., Chucheepsakul, S.: Two-to-one resonant multi-modal dynamics of horizontal/inclined cables. Part I: theoretical formulation and model validation. Nonlinear Dyn. 48(3), 231–252 (2007).  https://doi.org/10.1007/s11071-006-9086-0 CrossRefzbMATHGoogle Scholar
  12. 12.
    Mansour, A., Mekki, O.B., Montassar, S., Rega, G.: Catenary-induced geometric nonlinearity effects on cable linear vibrations. J. Sound Vib. 413, 332–353 (2018).  https://doi.org/10.1016/j.jsv.2017.10.012 CrossRefGoogle Scholar
  13. 13.
    Nayfeh, A.H.: Nonlinear Interactions: Analytical, Computational and Experimental Methods. Wiley, Hoboken (2000)zbMATHGoogle Scholar
  14. 14.
    Mazzilli, C.E., Sanches, C.T., Neto, O.G.B., Wiercigroch, M., Keber, M.: Non-linear modal analysis for beams subjected to axial loads: analytical and finite-element solutions. Int. J. Non-Linear Mech. 43(6), 551–561 (2008).  https://doi.org/10.1016/j.ijnonlinmec.2008.04.004 CrossRefzbMATHGoogle Scholar
  15. 15.
    Tien, W.-M., Namachchivaya, N.S., Bajaj, A.K.: Non-linear dynamics of a shallow arch under periodic excitation–I. 1:2 internal resonance. Int. J. Non-Linear Mech. 29(3), 349–366 (1994).  https://doi.org/10.1016/0020-7462(94)90007-8 CrossRefzbMATHGoogle Scholar
  16. 16.
    Xiong, L.-Y., Zhang, G.-C., Ding, H., Chen, L.-Q.: Nonlinear forced vibration of a viscoelastic buckled beam with 2: 1 internal resonance. Math. Probl. Eng. (2014).  https://doi.org/10.1155/2014/906324
  17. 17.
    Yi, Z., Wang, L., Kang, H., Tu, G.: Modal interaction activations and nonlinear dynamic response of shallow arch with both ends vertically elastically constrained for two-to-one internal resonance. J. Sound Vib. 333(21), 5511–5524 (2014).  https://doi.org/10.1016/j.jsv.2014.05.052 CrossRefGoogle Scholar
  18. 18.
    Ma, J., Gao, X., Liu, F.: Nonlinear lateral vibrations and two-to-one resonant responses of a single pile with soil-structure interaction. Meccanica 52(15), 3549–3562 (2017).  https://doi.org/10.1007/s11012-017-0681-6 MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Sahoo, B., Panda, L., Pohit, G.: Stability, bifurcation and chaos of a traveling viscoelastic beam tuned to 3: 1 internal resonance and subjected to parametric excitation. Int. J. Bifurc. Chaos 27(02), 1750017 (2017).  https://doi.org/10.1142/S0218127417500171 MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Yu, T.-J., Zhang, W., Yang, X.-D.: Global dynamics of an autoparametric beam structure. Nonlinear Dyn. 88(2), 1329–1343 (2017).  https://doi.org/10.1007/s11071-016-3313-0 CrossRefGoogle Scholar
  21. 21.
    Zhu, B., Dong, Y., Li, Y.: Nonlinear dynamics of a viscoelastic sandwich beam with parametric excitations and internal resonance. Nonlinear Dyn. 1–38 (2018).  https://doi.org/10.1007/s11071-018-4511-8
  22. 22.
    Neto, O.B., Mazzilli, C.: Evaluation of multi-modes for finite-element models: systems tuned into 1: 2 internal resonance. Int. J. Solids Struct. 42(21), 5795–5820 (2005).  https://doi.org/10.1016/j.ijsolstr.2005.03.026 CrossRefzbMATHGoogle Scholar
  23. 23.
    Srinil, N., Wiercigroch, M., O’Brien, P.: Reduced-order modelling of vortex-induced vibration of catenary riser. Ocean Eng. 36(17–18), 1404–1414 (2009).  https://doi.org/10.1016/j.oceaneng.2009.08.010 CrossRefGoogle Scholar
  24. 24.
    Srinil, N.: Multi-mode interactions in vortex-induced vibrations of flexible curved/straight structures with geometric nonlinearities. J. Fluids Struct. 26(7–8), 1098–1122 (2010).  https://doi.org/10.1016/j.jfluidstructs.2010.08.005 CrossRefGoogle Scholar
  25. 25.
    Srinil, N.: Analysis and prediction of vortex-induced vibrations of variable-tension vertical risers in linearly sheared currents. Appl. Ocean Res. 33(1), 41–53 (2011).  https://doi.org/10.1016/j.apor.2010.11.004 CrossRefGoogle Scholar
  26. 26.
    Chatjigeorgiou, I.K., Mavrakos, S.A.: Nonlinear resonances of parametrically excited risers–numerical and analytic investigation for \(\Omega \) = 2\(\omega \)1. Comput. Struct. 83(8–9), 560–573 (2005).  https://doi.org/10.1016/j.compstruc.2004.11.009 CrossRefGoogle Scholar
  27. 27.
    Franzini, G., Mazzilli, C.: Non-linear reduced-order model for parametric excitation analysis of an immersed vertical slender rod. Int. J. Non-Linear Mech. 80, 29–39 (2016).  https://doi.org/10.1016/j.ijnonlinmec.2015.09.019 CrossRefGoogle Scholar
  28. 28.
    Zhang, Y.-L., Chen, L.-Q.: Steady-state response of pipes conveying pulsating fluid near a 2: 1 internal resonance in the supercritical regime. Int. J. Appl. Mech. 6(05), 1450056 (2014).  https://doi.org/10.1142/S1758825114500562 CrossRefGoogle Scholar
  29. 29.
    Wilson, J.F., Biggers, S.B.: Responses of submerged, inclined pipelines conveying mass. J. Eng. Ind. 96(4), 1141–1146 (1974).  https://doi.org/10.1115/1.3438488 CrossRefGoogle Scholar
  30. 30.
    Alfosail, F.K., Nayfeh, A.H., Younis, M.I.: An analytic solution of the static problem of inclined risers conveying fluid. Meccanica 52(4), 1175–1187 (2016).  https://doi.org/10.1007/s11012-016-0459-2 MathSciNetzbMATHGoogle Scholar
  31. 31.
    Alfosail, F.K., Nayfeh, A.H., Younis, M.I.: Natural frequencies and mode shapes of statically deformed inclined risers. Int. J. Non-Linear Mech. 94, 12–19 (2017).  https://doi.org/10.1115/imece2016-66009 CrossRefGoogle Scholar
  32. 32.
    Khalak, A., Williamson, C.H.K.: Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping. J. Fluids Struct. 13(7), 813–851 (1999).  https://doi.org/10.1006/jfls.1999.0236 CrossRefGoogle Scholar
  33. 33.
    Facchinetti, M.L., de Langre, E., Biolley, F.: Coupling of structure and wake oscillators in vortex-induced vibrations. J. Fluids Struct. 19(2), 123–140 (2004).  https://doi.org/10.1016/j.jfluidstructs.2003.12.004 CrossRefGoogle Scholar
  34. 34.
    Nayfeh, A.H.: Resolving controversies in the application of the method of multiple scales and the generalized method of averaging. Nonlinear Dyn. 40(1), 61–102 (2005).  https://doi.org/10.1007/s11071-005-3937-y MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, Hoboken (2011)zbMATHGoogle Scholar
  36. 36.
    Cheney, E., Kincaid, D.: Numerical Mathematics and Computing. Cengage Learning, Boston (2012)zbMATHGoogle Scholar
  37. 37.
    Balachandran, B., Nayfeh, A.: Cyclic motions near a Hopf bifurcation of a four-dimensional system. Nonlinear Dyn. 3(1), 19–39 (1992).  https://doi.org/10.1007/BF00045469 CrossRefGoogle Scholar
  38. 38.
    . Wolfram Research, I.: Mathematica. In, vol. Version 10.1. Wolfram Research, Inc., Champaign, Illinois, (2015)Google Scholar
  39. 39.
    Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, Hoboken (2008)zbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Physical Sciences and Engineering DivisionKing Abdullah University of Science and TechnologyThuwalSaudi Arabia

Personalised recommendations