Advertisement

Nonlinear Dynamics

, Volume 95, Issue 2, pp 1245–1256 | Cite as

Conditional symmetry: bond for attractor growing

  • Chunbiao LiEmail author
  • Yujie Xu
  • Guanrong Chen
  • Yongjian Liu
  • Jincun Zheng
Original Paper

Abstract

Coexisting attractors with conditional symmetry exist in separated asymmetric basins of attraction with identical Lyapunov exponents. It is found that when a periodic function is introduced into the offset-boostable variable, infinitely many coexisting attractors may be coined. More interestingly, such coexisting attractors may be hinged together and then grow in the phase space as the time evolves without any change of the Lyapunov exponents. It is shown that, in such cases, an initial condition can be applied for selecting the starting position; consequently, the system will present a special regime of homogenous multistability. Circuit implementation based on STM32 verifies the numerical simulations and theoretical analysis.

Keywords

Conditional symmetry Homogenous multistability Attractor Offset boosting 

Notes

Acknowledgements

Chunbiao Li was supported by the National Nature Science Foundation of China (Grant No.: 61871230), the Natural Science Foundation of Jiangsu Province (Grant No.: BK20181410), the Startup Foundation for Introducing Talent of NUIST (Grant No.: 2016205) and a Project Funded by the Priority Academic Program Development of the Jiangsu Higher Education Institutions, Yongjian Liu was supported by the National Natural Science Foundation of China (Grant No.: 11561069). The authors thank Lijiang Dong for his help with STM32 implementation.

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Chen, M., Xu, Q., Lin, Y., Bao, B.C.: Multistability induced by two symmetric stable node-foci in modified canonical Chua’s circuit. Nonlinear Dyn. 87, 789–802 (2017)CrossRefGoogle Scholar
  2. 2.
    Bao, B., Li, Q., Wang, N., Xu, Q.: Multistability in Chua’s circuit with two stable node-foci. Chaos 26, 043111 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Lai, Q., Chen, S.: Research on a new 3D autonomous chaotic system with coexisting attractors. Optik 127, 3000–3004 (2016)CrossRefGoogle Scholar
  4. 4.
    Lai, Q., Chen, S.: Generating multiple chaotic attractors from Sprott B system. Int. J. Bifurc. Chaos. 26, 1650177 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Li, C., Sprott, J.C., Xing, H.: Crisis in amplitude control hides in multistability. Int. J. Bifurc. Chaos. 26, 1650233 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Li, C., Hu, W., Sprott, J.C., Wang, X.: Multistability in symmetric chaotic systems. Eur. Phys. J. Spec. Top. 224, 1493–1506 (2015)CrossRefGoogle Scholar
  7. 7.
    Leonov, G.A., Vagaitsev, V.I., Kuznetsov, N.V.: Localization of hidden Chua’s attractors. Phys. Lett. A. 375, 2230–2233 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Jafari, S., Sprott, J.C., Nazarimehr, F.: Recent new examples of hidden attractors. Eur. Phys. J. Spec. Top. 224, 1469–1476 (2015)CrossRefGoogle Scholar
  9. 9.
    Wei, Z., Wang, R., Liu, A.: A new finding of the existence of hidden hyperchaotic attractors with no equilibria. Math. Comput. Simul. 100, 13–23 (2014)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Sprott, J.C., Wang, X., Chen, G.: Coexistence of point, periodic and strange attractors. Int. J. Bifurc. Chaos. 23, 1350093 (2013)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Sprott, J.C.: A dynamical system with a strange attractor and invariant tori. Phys. Lett. A 378, 1361–1363 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Barrio, R., Blesa, F., Serrano, S.: Qualitative analysis of the Rössler equations: bifurcations of limit cycles and chaotic attractors. Physica D 238, 1087–1100 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Li, C., Sprott, J.C., Xing, H.: Hypogenetic chaotic jerk flows. Phys. Lett. A 380, 1172–1177 (2016)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Li, C., Sprott, J.C., Xing, H.: Constructing chaotic systems with conditional symmetry. Nonlinear Dyn. 87, 1351–1358 (2017)CrossRefzbMATHGoogle Scholar
  15. 15.
    Li, C., Thio, W., H. C. Iu, H., Lu T.: A memristive chaotic oscillator with increasing amplitude and frequency. IEEE Access (2018).  https://doi.org/10.1109/ACCESS.2017.2788408
  16. 16.
    Li, C., Sprott, J.C., Kapitaniak, T., Lu, T.: Infinite lattice of hyperchaotic strange attractors. Chaos Soliton Fractals 109, 76–82 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Thomas, R.: Deterministic chaos seen in terms of feedback circuits: analysis, synthesis, “Labyrinth Chaos”. Int. J. Bifurc. Chaos. 9, 1889–1905 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Li, C., Sprott, J.C.: An infinite 3-D quasiperiodic lattice of chaotic attractors. Phys. Lett. A 382, 581–587 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Lai, Q., Akgul, A., Li, C., Xu, G., Çavuşoğlu, Ü.: A new chaotic system with multiple attractors: dynamic analysis. Circuit Realiz. S-Box Des. Entropy 20, 12 (2018).  https://doi.org/10.3390/e20010012 Google Scholar
  20. 20.
    Akgul, A., Li, C., Pehlivan, I.: Amplitude control analysis of a four-wing chaotic attractor, its electronic circuit designs and microcontroller-based random number generator. J Circuit Syst. Comput. 26, 1750190 (2017)CrossRefGoogle Scholar
  21. 21.
    Yu, S., Lü, J., Chen, G., Yu, X.: Design and Implementation of grid multiwing hyperchaotic Lorenz system family via switching control and constructing super-heteroclinic loops. IEEE Trans. CAS-I: Fundam. Theor. Appl. 59, 1015–1028 (2012)MathSciNetGoogle Scholar
  22. 22.
    Wang, C., Liu, X., Hu, X.: Multi-piecewise quadratic nonlinearity memristor and its 2N-scroll and 2N + 1-scroll chaotic attractors system. Chaos 27, 033114 (2017)CrossRefzbMATHGoogle Scholar
  23. 23.
    Wang, C., Hu, X., Zhou, L.: A memristive hyperchaotic multiscroll Jerk system with controllable scroll numbers. Int. J. Bifurc. Chaos. 27, 1750091 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Lai, Q., Chen, S.: Coexisting attractors generated from a new 4D smooth chaotic system. Int. J. Control. Autom. Syst. 14, 1124–1131 (2016)CrossRefGoogle Scholar
  25. 25.
    Li, C., Akgul, A., Sprott, J.C., H. C. Iu, H., Thio, W.: A symmetric pair of hyperchaotic attractors. Int. J. Circuit Theory Appl. 1–10 (2018).  https://doi.org/10.1002/cta.2569

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Chunbiao Li
    • 1
    • 2
    Email author
  • Yujie Xu
    • 1
    • 2
  • Guanrong Chen
    • 3
  • Yongjian Liu
    • 4
  • Jincun Zheng
    • 4
  1. 1.Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET)Nanjing University of Information Science and TechnologyNanjingChina
  2. 2.Jiangsu Key Laboratory of Meteorological Observation and Information ProcessingNanjing University of Information Science and TechnologyNanjingChina
  3. 3.Department of Electronic EngineeringCity University of Hong KongKowloonChina
  4. 4.Guangxi Colleges and Universities Key Laboratory of Complex System Optimization and Big Data ProcessingYulin Normal UniversityYulinChina

Personalised recommendations