Advertisement

Nonlinear Dynamics

, Volume 95, Issue 2, pp 1221–1243 | Cite as

Secure communication on fractional-order chaotic systems via adaptive sliding mode control with teaching–learning–feedback-based optimization

  • Rui-Guo Li
  • Huai-Ning WuEmail author
Original Paper
  • 146 Downloads

Abstract

Due to the significance of secure communication, we do a research about this problem based on fractional-order chaotic systems, where a communication scheme is presented for encryption and decryption of the signal. Through applying Lyapunov stability theory and property of fractional calculus, an adaptive sliding mode controller is designed to achieve the synchronization phase between encryption system with encryption source and decryption system, which offers a tool to the decryption process. To improve the precision and speed of the decryption, we further put forward an optimization strategy for some parameters of the developed controller based on root mean square error of certain variable as a performance indicator. Meanwhile, as an improved teaching–learning-based optimization algorithm, teaching–learning–feedback-based optimization (TLFBO) algorithm is proposed to optimize the parameters more excellently. Subsequently, the simulation experiments, which contain performance test for TLFBO algorithm and secure communication of the signal, are, respectively, conducted on the benchmark functions as well as fractional-order Lorenz system with encryption source and fractional-order Lü system. At last, the experiment results illustrate the feasibility and practicability of the provided method by comparing with some other ones.

Keywords

Fractional-order chaotic systems Adaptive sliding mode control Optimization strategy Teaching–learning–feedback-based optimization (TLFBO) algorithm Secure communication 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (NNSFC) (No. 61522302). In addition, the authors would like to thank the editor and reviewers for their valuable suggestions on improving the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that this research complies with ethical standards, as well as there is no conflict of interests regarding the publication of this manuscript.

References

  1. 1.
    Lim, Y.-H., Oh, K.-K., Ahn, H.-S.: Stability and stabilization of fractional-order linear systems subject to input saturation. IEEE Trans. Autom. Control 58(4), 1062–1067 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Luo, S., Li, S., Tajaddodianfar, F., Hu, J.: Observer-based adaptive stabilization of the fractional-order chaotic MEMS resonator. Nonlinear Dyn. (2018).  https://doi.org/10.1007/s11071-018-4109-1
  3. 3.
    Hegazi, A.S., Ahmed, E., Matouk, A.E.: On chaos control and synchronization of the commensurate fractional order Liu system. Commun. Nonlinear Sci. Numer. Simul. 18(5), 1193–1202 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chen, Y., Vinagre, B.M.: Fractional-Order Systems and Controls: Fundamentals and Applications. Springer, Berlin (2010)zbMATHGoogle Scholar
  5. 5.
    Zhang, X., Qi, Y.: Design of an assemble-type fractional-order unit circuit and its application in Lorenz system. IET Circuits Devices Syst. 11(5), 437–445 (2017)CrossRefGoogle Scholar
  6. 6.
    Petráš, I.: Chaos in the fractional order Volta’s system: modeling and simulation. Nonlinear. Dyn. 57(1–2), 157–170 (2009)CrossRefzbMATHGoogle Scholar
  7. 7.
    Wang, Z., Huang, X., Shi, G.D.: Analysis of nonlinear dynamics and chaos in a fractional order financial system with time delay. Comput. Math. Appl. 62(3), 1531–1539 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Jia, H.Y., Chen, Z.Q., Qi, G.Y.: Chaotic characteristics analysis and circuit implementation for a fractional-order system. IEEE Trans. Circuits Syst. I 61(3), 845–853 (2014)CrossRefGoogle Scholar
  9. 9.
    Yau, H.-T., Wu, S.-Y., Chen, C.-L., Li, Y.-C.: Fractional-order chaotic self-synchronization-based tracking faults diagnosis of ball bearing systems. IEEE Trans. Ind. Electron. 63(6), 3824–3833 (2016)CrossRefGoogle Scholar
  10. 10.
    Xu, Y., Wang, H., Li, Y., Pei, B.: Image encryption based on synchronization of fractional chaotic systems. Commun. Nonlinear Sci. Numer. Simul. 19(10), 3753–3744 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Pu, Y.-F., Yuan, X., Yu, B.: Analog circuit implementation of fractional-order memristor: arbitrary-order lattice scaling fracmemristor. IEEE Trans. Circuits Syst. I PP(99), 1–14 (2018)Google Scholar
  12. 12.
    Debbarma, S., Dutta, A.: Utilizing electric vehicles for LFC in restructured power systems using fractional order controller. IEEE Trans. Smart Grid 8(6), 2554–2564 (2017)CrossRefGoogle Scholar
  13. 13.
    Muthukumar, P., Balasubramaniam, P., Ratnavelu, K.: Sling mode control for generalized robust synchronization of mismatched fractional order dynamical systems and its application to secure transmission of voice messages. ISA Trans. (2017).  https://doi.org/10.1016/j.isatra.2017.07.007
  14. 14.
    Srivastava, M., Ansari, S.P., Agrawal, S.K., Das, S., Leung, A.Y.T.: Anti-synchronization between identical and non-identical fractional-order chaotic systems using active control method. Nonlinear Dyn. 76(2), 905–914 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Luo, S., Li, S., Tajaddodianfar, F., Hu, J.: Adaptive synchronization of the fractional-order chaotic arch micro-electro-mechanical system via Chebyshev neural network. IEEE Sensors J. 18(1), 3524–3532 (2018)CrossRefGoogle Scholar
  16. 16.
    Li, D., Zhang, X.-P., Hu, Y.-T., Yang, Y.-Y.: Adaptive impulsive synchronization of fractional order chaotic system with uncertain and unknown parameters. Neurocomputing 167, 165–171 (2015)CrossRefGoogle Scholar
  17. 17.
    Wang, F., Yang, Y., Hu, A., Xu, X.: Exponential synchronization of fractional-order complex networks via pinning impulsive control. Nonlinear Dyn. 82(4), 1979–1987 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Lassoued, A., Boubaker, O.: Hybrid synchronization of multiple fractional-order chaotic systems with ring connection. In: Proceedings of International Conference on Modelling, Identification and Control, Algiers, Algeria, November, pp. 109-114 (2016)Google Scholar
  19. 19.
    Liu, L., Liang, D., Liu, C.: Nonlinear state-observer control for projective synchronization of a fractional-order hyperchaotic system. Nonlinear Dyn. 69(4), 1929–1939 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Xue, W, Zhang, M., Rui Wang, R: Synchronization of fractional-order PMSM chaotic model based on backstepping control method. In: Proceedings of International Conference on Modelling, Identification and Control, Kunming, China, pp. 647–651 (2017)Google Scholar
  21. 21.
    Luo, S., Li, S., Tajaddodianfar, F.: Adaptive chaos control of the fractional-order arch MEMS resonator. Nonlinear Dyn. 91(1), 539–547 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Chen, M., Shao, S.Y., Shi, P., Shi, Y.: Disturbance-observer-based robust synchronization control for a class of fractional-order chaotic systems. IEEE Trans. Circuits Syst. II 64(4), 417–421 (2017)CrossRefGoogle Scholar
  23. 23.
    Bigdeli, N., Ziazi, H.A.: Design of fractional robust adaptive intelligent controller for uncertain fractional-order chaotic systems based on active control technique. Nonlinear Dyn. 87(3), 1703–1719 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Zhou, P., Zhu, P.: A practical synchronization approach for fractional-order chaotic systems. Nonlinear Dyn. 89(3), 1719–1726 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Gao, L., Wang, Z., Zhou, K., Zhu, W., Wu, Z., Ma, T.: Modified sliding mode synchronization of typical three-dimensional fractional-order chaotic systems. Neurocomputing 166, 53–58 (2015)CrossRefGoogle Scholar
  26. 26.
    Muthukumar, P., Balasubramaniam, P., Ratnavelu, K.: Sliding mode control design for synchronization of fractional order chaotic systems and its application to a new cryptosystem. Int. J. Dyn. Control 5(1), 115–123 (2017)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Yin, L., Deng, Z., Huo, B., Xia, Y.: Finite-Time synchronization for chaotic Gyros systems with terminal sliding mode control. IEEE Trans. Syst. Man Cybern. Syst. PP(99), 1–10 (2017)CrossRefGoogle Scholar
  28. 28.
    Du, H., He, Y., Cheng, Y.: Finite-time synchronization of a class of second-order nonlinear multi-agent systems using output feedback control. IEEE Trans. Circuits Syst. I 61(6), 1778–1788 (2014)CrossRefGoogle Scholar
  29. 29.
    Xu, C., Yang, X., Lu, J., Feng, J., Alsaadi, F.E., Hayat, T.: Finite-time synchronization of networks via quantized intermittent pinning control. IEEE Trans. Cybern. PP(99), 1–7 (2017)Google Scholar
  30. 30.
    Delavari, H., Mohadeszadeh, M.: Robust finite-time synchronization of non-identical fractional-order hyperchaotic systems and its application in secure communication. IEEE/CAA J. Autom. Sin. PP(99), 1–8 (2016)Google Scholar
  31. 31.
    N’Doye, I., Voos, H., Darouach, M.: Observer-based approach for fractional-order chaotic synchronization and secure communication. IEEE J. Emerg. Sel. Top. Circuits Syst. 3(3), 442–450 (2013)CrossRefGoogle Scholar
  32. 32.
    Dasgupta, T., Paral, P., Bhattacharya, S.: Fractional-order sliding mode control based chaos synchronization and secure communication. In: Proceedings of International Conference on Computer Communication and Informatics, Coimbatore, India, pp. 1–6 (2015)Google Scholar
  33. 33.
    Souaia, M.A., Trabelsi, H., Saad, K.B.: Synchronization of the Liu chaotic system and its application in secure communication. In: Proceedings of International Conference on Control, Automation and Diagnosis, Hammamet, Tunisia, pp. 434–438 (2017)Google Scholar
  34. 34.
    Wang, X.-Y., Song, J.-M.: Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control. Commun. Nonlinear Sci. Numer. Simul. 14(8), 3351–3357 (2009)CrossRefzbMATHGoogle Scholar
  35. 35.
    Aguiar, B., González, T., Bernal, M.: A way to exploit the fractional stability domain for robust chaos suppression and synchronization via LMIs. IEEE Trans. Autom. Control 61(10), 2796–2807 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Pan, L., Zhou, W., Zhou, L., Sun, K.: Chaos synchronization between two different fractional-order hyperchaotic systems. Commun. Nonlinear Sci. Numer. Simul. 16(6), 2628–2640 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Zhang, L., Yan, Y.: Robust synchronization of two different uncertain fractional-order chaotic systems via adaptive sliding mode control. Nonlinear Dyn. 76(3), 1761–1767 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Wang, Q., Qi, D.-L.: Synchronization for fractional order chaotic systems with uncertain parameters. Int. J. Control Autom. Syst. 14(1), 211–216 (2016)CrossRefGoogle Scholar
  39. 39.
    Maheri, M., Arifin, N.M.: Synchronization of two different fractional-order chaotic systems with unknown parameters using a robust adaptive nonlinear controller. Nonlinear Dyn. 85(2), 825–838 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Xia, Y., Yang, Z., Han, M.: Lag synchronization of unknown chaotic delayed Yang–Yang-type fuzzy neural networks with noise perturbation based on adaptive control and parameter identification. IEEE Trans. Neural Netw. 20(7), 1165–1180 (2009)CrossRefGoogle Scholar
  41. 41.
    Lin, T.-C., Lee, T.-Y.: Chaos synchronization of uncertain fractional-order chaotic systems with time delay based on adaptive fuzzy sliding mode control. IEEE Trans. Fuzzy Syst. 19(4), 623–635 (2011)CrossRefGoogle Scholar
  42. 42.
    Lu, J.-G., Hill, D.J.: Global asymptotical synchronization of chaotic Lur’e system using sampled data: a linear matrix inequality approach. IEEE Trans. Circuits Syst. II 55(6), 586–590 (2008)CrossRefGoogle Scholar
  43. 43.
    Zhang, C.-K., He, Y., Wu, M.: Improved global asymptotical synchronization of chaotic Lur’e systems with sampled-data control. IEEE Trans. Circuits Syst. II 56(4), 320–324 (2009)CrossRefGoogle Scholar
  44. 44.
    Li, R.-G., Wu, H.-N.: Adaptive synchronization control based on QPSO algorithm with interval estimation for fractional-order chaotic systems and its application in secret communication. Nonlinear Dyn. 92(3), 935–959 (2018)CrossRefzbMATHGoogle Scholar
  45. 45.
    Li, C., Deng, W.: Remarks on fractional derivatives. Appl. Math. Comput. 187(2), 777–784 (2007)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Slotine, J.-J.E., Li, W.P.: Applied Nonlinear Control. Prentice Hall, Englewood Cliffs (1991)zbMATHGoogle Scholar
  47. 47.
    He, S., Sun, K.: Dynamics of the fractional-order Lorenz system based on Adomian decomposition method and its DSP implementation. IEEE/CAA J. Autom. Sin. PP(99), 1–6 (2016)Google Scholar
  48. 48.
    Hsu, H.-P.: Solving feeder assignment and component sequencing problems for printed circuit board assembly using particle swarm optimization. IEEE Trans. Autom. Sci. Eng. 14(2), 881–893 (2017)CrossRefGoogle Scholar
  49. 49.
    Maji, T.K., Acharjee, P.: Multiple solutions of optimal PMU placement using exponential binary PSO algorithm for smart grid applications. IEEE Trans. Ind. Appl. 53(3), 2550–2559 (2017)CrossRefGoogle Scholar
  50. 50.
    Tian, G., Zhou, M.C., Li, P., Zhang, C., Jia, H.: Multiobjective optimization models for locating vehicle inspection stations subject to stochastic demand, varying velocity and regional constraints. IEEE Trans. Intell. Transp. Syst. 17(7), 1978–1987 (2016)CrossRefGoogle Scholar
  51. 51.
    Gunji, B., Deepak, B.B.B.V.L., Bahubalendruni, C.M.V.A.R., Biswal, D.B.B.: An optimal robotic assembly sequence planning by assembly subsets detection method using teaching learning-based optimization algorithm. IEEE Trans. Autom. Sci. Eng. PP(99), 1–17 (2018)Google Scholar
  52. 52.
    Li, X., Li, K., Yang, Z.: Teaching-learning-feedback-based optimization. In: Proceedings of International Conference in Swarm Intelligence, Fukuoka, Japan, July–August, pp. 71–79 (2017)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Science and Technology on Aircraft Control Laboratory, School of Automation Science and Electrical EngineeringBeihang University (Beijing University of Aeronautics and Astronautics)BeijingChina

Personalised recommendations