Bounded consensus tracking of second-order multi-agent systems using rectangular impulsive control

  • Pengpeng Ye
  • Andong ShengEmail author
  • Yinya Li
  • Guoqing Qi
Original Paper


In this paper, the problem of bounded consensus tracking for second-order multi-agent systems is addressed with fixed and randomly switching directed topologies, wherein the leader is stimulated by an unknown time-varying but bounded external input. A novel distributed rectangular impulsive control strategy is developed, which only utilizes casual sampled position data of the neighboring agents. The proposed protocol is beneficial to the limited bandwidth and energy source. By virtue of graph and matrix theories, necessary and sufficient conditions are established, which guarantee the bounded consensus tracking under fixed topology and the mean-square bounded consensus under randomly switching topologies. The proposed algorithms incorporate the performance of the Dirac impulsive control and the sampled-data control. Finally, numerical examples are delivered to validate the effectiveness of the theoretical results.


Bounded consensus tracking Sampled position data Rectangular impulsive Randomly switching topologies 



This work was supported by the National Natural Science Foundation of China under grants 61273076, 61871221, 61876024, and 61773210. The authors would like to thank anonymous reviewers for their constructive suggestions and comments.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Zhao, J., Zhou, R.: Unified approach to cooperative guidance laws against stationary and maneuvering targets. Nonlinear Dyn. 81(4), 1635–1647 (2015)CrossRefGoogle Scholar
  2. 2.
    Dong, X., Yu, B., Shi, Z., Zhong, Y.: Time-varying formation control for unmanned aerial vehicles: theories and applications. IEEE Trans. Control Syst. Technol. 23(1), 340–348 (2015)CrossRefGoogle Scholar
  3. 3.
    Nedic, A., Ozdaglar, A., Parrilo, P.A.: Constrained consensus and optimization in multi-agent networks. IEEE Trans. Autom. Control 55(4), 922–938 (2010)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Ren, W.: Multi-vehicle consensus with a time-varying reference state. Syst. Control Lett. 56(7), 474–483 (2007)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Ren, W., Cao, Y.: Distributed coordinated tracking with reduced interaction via a variable structure approach. IEEE Trans. Autom. Control 57(1), 33–48 (2012)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Li, Z., Liu, X., Ren, W., Xie, L.: Distributed tracking control for linear multiagent systems with a leader of bounded unknown input. IEEE Trans. Autom. Control 58(2), 518–523 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Yang, T., Gao, H., Zhang, W., Kurths, J.: Leader-following consensus of a class of stochastic delayed multi-agent systems with partial mixed impulses. Automatica 53, 346–354 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Zhou, B., Liao, X.: Leader-following second-order consensus in multi-agent systems with sampled data via pinning control. Nonlinear Dyn. 78(1), 555–569 (2014)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Li, H., Liao, X., Huang, T., Zhu, W.: Event-triggering sampling based leader-following consensus in second-order multi-agent systems. IEEE Trans. Autom. Control 60(7), 1998–2003 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ding, L., Han, Q.L., Guo, G.: Network-based leader-following consensus for distributed multi-agent systems. Automatica 49(7), 2281–2286 (2013)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ding, L., Guo, G.: Sampled-data leader-following consensus for nonlinear multi-agent systems with markovian switching topologies and communication delay. J. Frankl. Inst. 352(1), 369–383 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    He, W., Zhang, B., Han, Q.L., Qian, F., Kurths, J., Cao, J.: Leader-following consensus of nonlinear multiagent systems with stochastic sampling. IEEE Trans. Cybern. 47(2), 327–338 (2017)Google Scholar
  13. 13.
    Tang, Q., Zhou, H., Liu, Z.W., Hu, W.S., Wang, W.: Distributed consensus tracking with stochastic quantization via pulse-modulated intermittent control. J. Frankl. Inst. 354(8), 3485–3501 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Xie, D., Cheng, Y.: Bounded consensus tracking for sampled-data second-order multi-agent systems with fixed and markovian switching topology. Int. J. Robust Nonlinear Control 25(2), 252–268 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Cheng, Y., Xie, D.: Consensus of second-order multi-agent systems with a time-varying reference signal via sampled control. Int. J. Control 86(5), 923–933 (2013)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Xie, D., Cheng, Y.: Consensus tracking control of multi-agent systems with an active virtual leader: time delay case. IET Control Theory Appl. 8(17), 1815–1823 (2014)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Yu, X., Liu, L.: Cooperative control for moving-target circular formation of nonholonomic vehicles. IEEE Trans. Autom. Control 62(7), 3448–3454 (2017)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Han, G.S., Guan, Z.H., Li, J., He, D.X., Zheng, D.F.: Multi-tracking of second-order multi-agent systems using impulsive control. Nonlinear Dyn. 84(3), 1771–1781 (2016)MathSciNetCrossRefGoogle Scholar
  19. 19.
    He, W., Chen, G., Han, Q.L., Qian, F.: Network-based leader-following consensus of nonlinear multi-agent systems via distributed impulsive control. Inf. Sci. 380, 145–158 (2017)CrossRefGoogle Scholar
  20. 20.
    Guan, Z.H., Liu, Z.W., Feng, G., Jian, M.: Impulsive consensus algorithms for second-order multi-agent networks with sampled information. Automatica 48(7), 1397–1404 (2012)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Ding, L., Yu, P., Liu, Z.W., Guan, Z.H., Feng, G.: Consensus of second-order multi-agent systems via impulsive control using sampled hetero-information. Automatica 49(9), 2881–2886 (2013)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Guan, Z.H., Han, G.S., Li, J., He, D.X., Gang, F.: Impulsive multiconsensus of second-order multiagent networks using sampled position data. IEEE Trans. Neural Netw. Learn. Syst. 26(11), 2678–2688 (2015)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Jiang, F., Xie, D., Liu, B.: Static consensus of second-order multi-agent systems with impulsive algorithm and time-delays. Neurocomputing 223, 18–25 (2017)CrossRefGoogle Scholar
  24. 24.
    Zhao, X.W., Hu, B., Guan, Z.H., Chen, C.Y., Chi, M., Zhang, X.H.: Multi-flocking of networked non-holonomic mobile robots with proximity graphs. IET Control Theory Appl. 10(16), 2093–2099 (2016)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Kim, J.M., Park, J.B., Choi, Y.H.: Leaderless and leader-following consensus for heterogeneous multi-agent systems with random link failures. IET Control Theory Appl. 8(1), 51–60 (2014)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Yu, M., Yan, C., Xie, D., Xie, G.: Event-triggered tracking consensus with packet losses and time-varying delays. IEEE/CAA J. Automatica Sinica 3(2), 165–173 (2016)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Garcia, E., Cao, Y., Casbeer, D.W.: Decentralised event-triggered consensus of double integrator multi-agent systems with packet losses and communication delays. IET Control Theory Appl. 10(15), 1835–1843 (2016)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Mu, N., Liao, X., Huang, T.: Leader-following consensus in second-order multiagent systems via event-triggered control with nonperiodic sampled data. IEEE Trans. Circuits Syst. II Express Br. 62(10), 1007–1011 (2015)CrossRefGoogle Scholar
  29. 29.
    Zhang, Y., Tian, Y.P.: Consensus of data-sampled multi-agent systems with random communication delay and packet loss. IEEE Trans. Autom. Control 55(4), 939–943 (2010)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Zhang, Y., Tian, Y.P.: Allowable sampling period for consensus control of multiple general linear dynamical agents in random networks. Int. J. Control 83(11), 2368–2377 (2010)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Ding, D., Wang, Z., Ho, D.W.C., Wei, G.: Observer-based event-triggering consensus control for multiagent systems with lossy sensors and cyber-attacks. IEEE Trans. Cybern. 47(8), 1936–1947 (2017)CrossRefGoogle Scholar
  32. 32.
    Han, G.S., Guan, Z.H., Li, J., Liao, R.Q., Cheng, X.M.: Multi-consensus of multi-agent networks via a rectangular impulsive approach. Syst. Control Lett. 76, 28–34 (2015)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Zhang, H., Yue, D., Zhao, W., Hu, S., Dou, C.: Distributed optimal consensus control for multiagent systems with input delay. IEEE Trans. Cybern. 48(6), 1747–1759 (2018)CrossRefGoogle Scholar
  34. 34.
    Zhang, H., Yue, D., Dou, C., Zhao, W., Xie, X.: Data-driven distributed optimal consensus control for unknown multiagent systems with input-delay. IEEE Trans. Cybern. 1–11 (2018)Google Scholar
  35. 35.
    Ma, Q., Xu, S., Lewis, F.L.: Second-order consensus for directed multi-agent systems with sampled data. Int. J. Robust Nonlinear Control 24(16), 2560–2573 (2014)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Huang, N., Duan, Z., Chen, G.: Some necessary and sufficient conditions for consensus of second-order multi-agent systems with sampled position data. Automatica 63, 148–155 (2016)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Yu, Z., Jiang, H., Hu, C.: Second-order consensus for multiagent systems via intermittent sampled data control. IEEE Trans. Syst. Man Cybern. Syst. 48(11), 1986–2002 (2017)CrossRefGoogle Scholar
  38. 38.
    Ren, W., Beard, R.: Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans. Autom. Control 50(5), 655–661 (2005)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Hu, J., Hong, Y.: Leader-following coordination of multi-agent systems with coupling time delays. Physica A Stat. Mech. Appl. 374(2), 853–863 (2007)CrossRefGoogle Scholar
  40. 40.
    Kovacs, I., Silver, D.S.: Determinants of commuting-block matrices. Am. Math. Mon. 106(10), 950–952 (1999)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Chen, J., Guan, Z., He, D., Chi, M.: Multi-consensus for second-order multi-agent systems based on sampled position information. IET Control Theory Appl. 9(3), 358–366 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Pengpeng Ye
    • 1
  • Andong Sheng
    • 1
    Email author
  • Yinya Li
    • 1
  • Guoqing Qi
    • 1
  1. 1.School of AutomationNanjing University of Science and TechnologyNanjingChina

Personalised recommendations