Advertisement

Nonlinear Dynamics

, Volume 95, Issue 2, pp 1099–1116 | Cite as

Adaptive finite-time reconfiguration control of unmanned aerial vehicles with a moving leader

  • Dandan Wang
  • Qun Zong
  • Bailing TianEmail author
  • Hanchen Lu
  • Jie Wang
Original Paper
  • 137 Downloads

Abstract

This paper investigates adaptive reconfiguration control problem for unmanned aerial vehicle (UAV) helicopter system with a moving leader. Only part of UAV helicopter is informed to have access to the leader’s position. The six degree-of-freedom UAV system is composed of position outer loop and attitude inner loop. In this paper, we introduce a new fully distributed, finite-time reconfiguration controller and the problem of inter-UAVs collision avoidance was solved using potential energy function approach, extending the asymptotical formation controller without collision avoidance from the literature. The distinctive feature of our algorithm from existing works is that the novel formation reconfiguration controller can achieve finite-time, collision avoidance and fully distributed formation only based on relative positions between UAV and its adjacents. It means that the control algorithm is independent of any global information that requires to be calculated by each follower UAV. The system uncertainties are estimated by radial basis function neural network in practical finite time. Simulation results are shown to demonstrate the efficiency of the designed strategy.

Keywords

Formation reconfiguration control Adaptive control Finite-time control UAV helicopters Potential energy function RBFNN 

Notes

Acknowledgements

This work is supported by National Natural Science Foundation of China (Nos. 61673294, 61773278, 61573060, 61703134, 61503323, 61603274), Joint fund of the equipment pre Research Ministry of Education (6141A02022328), Natural Science Foundation of Tianjin (No. 17JCQNJC04400), Youth Foundation of Hebei Educational Committee (No. QN2015068), Natural Science Foundation of Hebei Province (Nos. F2015202150, F2017203130) and Research Project of Tianjin Municipal Education Commission (Grant No. 2017KJ249).

Compliance with ethical standards

Conflict of interest

No conflict of interest exits in the submission of this manuscript, and the manuscript is approved by all authors for publication.

References

  1. 1.
    Liao, F., Teo, R., Wang, J., Dong, X., Lin, F., Peng, K.: Distributed formation and reconfiguration control of vtol uavs. IEEE Trans. Control Syst. Technol. 25(1), 270–277 (2017)CrossRefGoogle Scholar
  2. 2.
    Li, S., Wang, X.: Finite-time consensus and collision avoidance control algorithms for multiple auvs. Automatica 49(11), 3359–3367 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ghapani, S., Mei, J., Ren, W., Song, Y.: Fully distributed flocking with a moving leader for lagrange networks with parametric uncertainties. Automatica 67, 67–76 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Kuriki, Y., Namerikawa, T.: Formation control with collision avoidance for a multi-uav system using decentralized mpc and consensus-based control. SICE J. Control Meas. Syst. Integr. 8(4), 285–294 (2015)CrossRefGoogle Scholar
  5. 5.
    Zhou, D., Hu, Y., Li, S.: Multiple spacecraft formation reconfiguration planning with nonconvex collision avoidance constraints. In: 2016 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC), pp. 643–647 (2016)Google Scholar
  6. 6.
    Seo, J., Kim, Y., Tsourdos, A., White, B.: Multiple uav formation reconfiguration with collision avoidance guidance via differential geometry concept. In: International Congress of the Aeronautical Sciences ICAS, pp. 1–8 (2012)Google Scholar
  7. 7.
    Tian, B., Yin, L., Wang, H.: Finite-time reentry attitude control based on adaptive multivariable disturbance compensation. IEEE Trans. Ind. Electron. 62(9), 5889–5898 (2015)CrossRefGoogle Scholar
  8. 8.
    Zong, Q., Wang, J., Tao, Y.: Adaptive high-order dynamic sliding mode control for a flexible air-breathing hypersonic vehicle. Int. J. Robust Nonlinear Control 23(15), 1718–1736 (2013)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Zong, G., Ren, H., Hou, L.: Finite-time stability of interconnected impulsive switched systems. Iet Control Theory Appl. 10(6), 648–654 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gao, L., Luo, F., Yan, Z.: Finite-time annular domain stability of impulsive switched systems: mode-dependent parameter approach. Int. J. Control (2017).  https://doi.org/10.1080/00207179.2017.1396360
  11. 11.
    Tian, B., Zuo, Z., Yan, X., Wang, H.: A fixed-time output feedback control scheme for double integrator systems. Automatica 80, 17–24 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Tian, B., Lu, H., Zuo, Z., Yang, W.: Fixed-time leader-follower output feedback consensus for second-order multiagent systems. IEEE Trans. Cybern. (2018).  https://doi.org/10.1109/TCYB.2018.2794759
  13. 13.
    Jadbabaie, A., Lin, J., Morse, A.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control 48(6), 988–1001 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Olfatisaber, R., Murray, R.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Ren, W., Beard, R.: Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans. Autom. Control 50(5), 655–661 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Meng, Z., Yang, T., Li, G., Ren, W., Wu, D.: Synchronization of coupled dynamical systems: Tolerance to weak connectivity and arbitrarily bounded time-varying delays. IEEE Trans. Autom. Control 63(6), 1791–1797 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Dong, X., Zhou, Y., Ren, Z., Zhong, Y.: Time-varying formation tracking for second-order multi-agent systems subjected to switching topologies with application to quadrotor formation flying. IEEE Trans. Ind. Electron. 64(6), 5014–5024 (2017)CrossRefGoogle Scholar
  18. 18.
    Lin, Z., Broucke, M., Francis, B.: Local control strategies for groups of mobile autonomous agents. IEEE Trans. Autom. Control 49(4), 622–629 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Tian, B., Fan, W., Su, R., Zong, Q.: Real-time trajectory and attitude coordination control for reusable launch vehicle in reentry phase. IEEE Trans. Ind. Electron. 62(3), 1639–1650 (2015)CrossRefGoogle Scholar
  20. 20.
    Zhao, Y., Duan, Z., Wen, G., Chen, G.: Distributed finite-time tracking for a multi-agent system under a leader with bounded unknown acceleration. Syst. Control Lett. 81, 8–13 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Filippov, A.: Differential Equations with Discontinuous Right Hand Sides. Kluwer Academic Publishers, Dordrecht (1988)CrossRefzbMATHGoogle Scholar
  22. 22.
    Orlov, I.V.: Discontinuous Systems: Lyapunov Analysis and Robust Synthesis Under Uncertainty Conditions. Springer, Berlin (2009)zbMATHGoogle Scholar
  23. 23.
    Zong, Q., Shao, S.: Decentralized finite-time attitude synchronization for multiple rigid spacecraft via a novel disturbance observer. ISA Trans. 65, 150–163 (2016)CrossRefGoogle Scholar
  24. 24.
    Zhu, Z., Xia, Y., Fu, M.: Attitude stabilization of rigid spacecraft with finite-time convergence. Int. J. Robust Nonlinear Control 21(6), 686–702 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Wang, D., Zong, Q., Tian, B., Shao, S., Zhang, X., Zhao, X.: Neural network disturbance observer-based distributed finite-time formation tracking control for multiple unmanned helicopters. ISA Trans. 73, 208–226 (2018)CrossRefGoogle Scholar
  26. 26.
    Tian, B., Liu, L., Lu, H., Zuo, Z., Zong, Q., Zhang, Y.: Multivariable finite time attitude control for quadrotor uav: Theory and experimentation. IEEE Trans. Ind. Electron. 65(3), 2567–2577 (2018)CrossRefGoogle Scholar
  27. 27.
    Li, Z., Ren, W., Liu, X., Fu, M.: Consensus of multi-agent systems with general linear and Lipschitz nonlinear dynamics using distributed adaptive protocols. IEEE Trans. Autom. Control 58(7), 1786–1791 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Li, X., Luo, X., Wang, J., Guan, X.: Finite-time consensus of nonlinear multi-agent system with prescribed performance. Nonlinear Dyn. 91(4), 2397–2409 (2018)CrossRefzbMATHGoogle Scholar
  29. 29.
    Wang, D., Zong, Q., Tian, B., Wang, F., Dou, L.: Finite-time fully distributed formation reconfiguration control for uav helicopters. Int. J. Robust Nonlinear Control (2018).  https://doi.org/10.1002/rnc.4361
  30. 30.
    Kamal, S., Moreno, J., Chalanga, A., Bandyopadhyay, B., Fridman, L.: Continuous terminal sliding-mode controller. Automatica 69, 308–314 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Indira, N., Christopher, E.: A multivariable super-twisting sliding mode approach. Automatica 50(3), 984–988 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Wang, J., Zong, Q., Su, R., Tian, B.: Continuous high order sliding mode controller design for a flexible air-breathing hypersonic vehicle. ISA Trans. 53(3), 690–698 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.School of Electrical Automation and Information EngineeringTianjin UniversityTianjinPeople’s Republic of China
  2. 2.School of Control Science and EngineeringHebei University of TechnologyTianjinPeople’s Republic of China

Personalised recommendations