Advertisement

Nonlinear Dynamics

, Volume 95, Issue 2, pp 1079–1098 | Cite as

Localized modulated wave solution of diffusive FitzHugh–Nagumo cardiac networks under magnetic flow effect

  • Clovis Ntahkie TakemboEmail author
  • Alain Mvogo
  • H. P. Ekobena Fouda
  • T. C. Kofane
Original Paper

Abstract

Motivated by often non-observance clinical effects attributed to some pathological heart diseases, we obtain in this paper the analytical solutions describing localized nonlinear excitations in an improved diffusive FitzHugh–Nagumo cardiac tissue model. The improved model includes the magnetic flux variable used to describe the effect of electromagnetic induction created by fluctuation in ionic concentration during the period when signals are initiated and propagated in the heart. To be consistent with physical units, memristor is used to achieve coupling between membrane potential and magnetic flux such that the induced current from electromagnetic induction is approached. Using the specific reductive perturbation approach in the semi-discrete approximation limit, we show that the whole system dynamics is governed by a modified complex Ginzburg–Landau equation, whose coefficients are dependent on memristive feedback gain. This suggests from biophysical point of view that cardiac electrical signals or waves initiated from the heart sinus node propagates in cardiac networks both in temporal and spatial dimensions in the form of a localized modulated solitonic wave thereby regulating heartbeat as powerful pacemaker. Our analytical solutions are then verified through numerical experiments.

Keywords

Magnetic cardiac networks Modulational instability Modified complex Ginzburg–Landau equation Soliton 

Notes

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

References

  1. 1.
    Nash, M.P., Panfilov, A.V.: Electrochemical model of excitable tissue to study reentrant cardiac arrhythmias. Prog. Biophys. Mol. Biol. 85, 501–522 (2004)CrossRefGoogle Scholar
  2. 2.
    Tusscher, K.T., Noble, D.: A model of human ventricular tissue. Am. J. Physsiol. 286, H1573–H1589 (2004)Google Scholar
  3. 3.
    Cherry, E.M., Fenton, F.H.: Contribution of the Purkinje network to wave propagation in the canine ventricle: insights from a combined electrophysiological-anatomical model. Nonlinear Dyn. 68, 365–379 (2012)CrossRefGoogle Scholar
  4. 4.
    Sanguinetti, M.C., Tristani-Firouzi, M.: hERG potassium channels and cardiac arrhythmia. Nature 440, 463–469 (2006)CrossRefGoogle Scholar
  5. 5.
    Sanguinetti, M.M., Varigos, G.A., Hunt, D., Sloman, J.G.: Sinus arrhythmia in acute myocardial infarction. Med. J. Aust. 2(2), 52–53 (1978)Google Scholar
  6. 6.
    Garfinkel, A., Kim, Y.H., Voroshilovsky, O., et al.: Preventing ventricular fibrillation by flattening cardiac restitution. Proc. Natl. Acad. Sci. USA 97, 6061–6066 (2000)CrossRefGoogle Scholar
  7. 7.
    Witkowski, F.X., Leon, L.J., Penkoske, P.A., et al.: Spatiotemporal evolution of ventricular fibrillation. Nature 392, 78–82 (1998)CrossRefGoogle Scholar
  8. 8.
    Chen, Q.Y., Kirsch, G.E., Zhang, D.M., et al.: Genetic basis and molecular mechanism for idiopathic ventricullar fibrillation. Nature 392, 293–296 (1998)CrossRefGoogle Scholar
  9. 9.
    Zipes, D.P., et al.: Cardiac Electrophysiology: From Cell to Bedside. Saunders, Philadelphia (2000)Google Scholar
  10. 10.
    Baxter, W.T., Mironov, S.F., Zaitsev, A.V., et al.: Visualizing excitation waves inside cardiac muscle using transillumination. Biophys. J. 50, 516–530 (2001)CrossRefGoogle Scholar
  11. 11.
    Rosenbaum, D.S., Jalife, J. (eds.): Optical Mapping of Cardiac Excitation and Arrhythmias. Blackwell, Hoboken (2001)Google Scholar
  12. 12.
    Lemery, R., Birnie, D.: Normal atrial activation and voltage during sinus rhythm in the human heart: an endocardial and epicardial mapping study in patients with a history of atrial fibrillation. J. Cardiovasc. Electrophysiol. 18, 402–408 (2007)CrossRefGoogle Scholar
  13. 13.
    Nash, M.P., Bradley, C.P., Sutton, M.P.: Whole heart action potential duration restitution properties in cardiac patients: a combined clinical and modelling study. Exp. Physiol. 91, 339–354 (2006)CrossRefGoogle Scholar
  14. 14.
    Bernus, O., Holden, A.V., Panfilov, A.V.: Nonlinear waves in excitable media: approaches to cardiac arrhythmias. Physica D 238, 5–8 (2009)MathSciNetGoogle Scholar
  15. 15.
    Kerma, A.: Physics of cardiac arrhythmogenesis. Annu. Rev. Condens. Matter Phys. 4(1), 313–337 (2013)CrossRefGoogle Scholar
  16. 16.
    Gray, R.A.: Cardiac Electrophysiology: From Cell to Bedside. Elsevier, Amsterdam (2013)Google Scholar
  17. 17.
    Tolkacheva, E.G., Zhao, X.: Nonlinear dynamics of periodically paced cardiac tissue cardiac tissue. Nonlinear Dyn. 68(3), 347–363 (2012)CrossRefGoogle Scholar
  18. 18.
    Karma, A.: Electrical alternans and spiral wave breakup in cardiac tissue. Chaos 4, 461–472 (1994)CrossRefGoogle Scholar
  19. 19.
    Vigmond, E.J., Hughes, M., Plank, G.: Computational tools for modelling electrical activity in cardiac tissue. J. Electrocardial. 36, SI69–SI74 (2003)CrossRefGoogle Scholar
  20. 20.
    Baum, O.A., Voloshin, V.I., Popov, L.A.: Biophysical models of the heart electrical activity. Biofizika 51, 1069–1086 (2006)Google Scholar
  21. 21.
    FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–466 (1961)CrossRefGoogle Scholar
  22. 22.
    Nagumo, J., Arimoto, S., Yoshizawa, S., et al.: An active pulse transmission line simulating nerve axon. Proc. IRE 50, 2061–2070 (1962)CrossRefGoogle Scholar
  23. 23.
    Carpio, A., Bonilla, L.L.: Pulse propagation in discrete systems of coupled excitable cells. SIAM J. Appl. Math. 63(2), 619 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Carpio, A.: Wave trains, self-oscillations and synchronization in discrete media. Physica D 207, 117 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Abbasbandy, S.: Soliton solutions for the Fitzhugh–Nagumo equation with the homotopy analysis method. Appl. Math. Modell. 32, 2706–2714 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Van Gorder, R.A., Vajravelu, K.: A variational formulation of the Nagumo reaction diffusion equation and the Nagumo telegraph equation. Nonlinear Anal. Real World Appl. 11, 2957–2962 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Tatchim Bemmo, D., Siewe Siewe, M., Tchawoua, C.: Combined effects of correlated bounded noises and weak periodic signal input in the modified FitzHugh–Nagumo neural model. Commun. Nolinear Sci. Numer. Simul. 18, 1275–1287 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Franovi, I., Todorovi, K., Perc, M., Vasovi, N., Buri, N.: Activation process in excitable systems with multiple noise sources: one and two interacting units. Phys. Rev. E. 65, 055204(R) (2002)CrossRefGoogle Scholar
  29. 29.
    Gosak, M., Marhl, M., Perc, M.: Pacemaker-guided noise-induced spatial periodicity in excitable media. Physica D 238, 506–515 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Gou, W., Du, L.C., Mei, D.C.: Coherence and spike death induced by bounded noise and delayed feedback in an excitable sytstem. Eur. Phys. J. B. 85, 182 (2012)CrossRefGoogle Scholar
  31. 31.
    Lv, M., Wang, C.N., Ren, G.D.: Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn. 385(85), 1479–1490 (2016)CrossRefGoogle Scholar
  32. 32.
    Mvogo, A., Takembo, C.N., Ekobena, H.P., et al.: Pattern formation in diffusive excitable systems under magnetic flow effects. Phys. Lett. A 381, 2264–2271 (2017)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Ma, J., Wu, F., Hayat, T., et al.: Electromagnetic induction and radition-induced abnormality of wave propagation in excitable media. Physica A 486, 508–516 (2017)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Rostami, Z., Jafari, S., Perc, M., Slavinec, M.: Elination of spiral waves in excitable media by magnetic induction. Nonlinear Dyn. 55(1), 679–692 (2018)CrossRefGoogle Scholar
  35. 35.
    Strukov, D.B., Snider, G.S., Stewart, D.R., et al.: The missing memristor found. Nature 453, 80–83 (2008)CrossRefGoogle Scholar
  36. 36.
    Takembo, C.N., Mvogo, A., Ekobena, H.P., et al.: Effect of electromagnetic radiation on the dynamics of spatiotemporal patterns in memristor-based neuronal network. Nonlinear Dyn. (2018). https://doi.org/10.1007/s11071-018-4616-0
  37. 37.
    Aliev, R.R., Panfilov, A.V.: A simple two-variable model of cardiac cxcitation. Chaos Solitons Fract. 7, 293–301 (1996)CrossRefGoogle Scholar
  38. 38.
    Takembo, C.N., Mvogo, A., Ekobena, H.P., et al.: Modulated wave formation in myocardial cells under electromagnetic radiation. Int. J. Mod. Phys. B 32, 1850165 (2018)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Wu, F., Wang, C., Xu, Y., Ma, J.: Model of electrical activity in cardiac tissue under electromagnetic induction. Sci. Rep. 6, 28 (2016)CrossRefGoogle Scholar
  40. 40.
    Remoissenet, M.: Low-amplitude breather and envelope solitons in quasi-one dimensional dimensional physicals model. Phys. Rev. B 33, 2386–2392 (1986)CrossRefGoogle Scholar
  41. 41.
    Dauxois, T., Peyrard, M.: Physics of Solitons, Chapter 3. Cambridge University Press, Cambridge (2006)zbMATHGoogle Scholar
  42. 42.
    Nozaki, K., Bekki, N.: Chaos in a perturbed Nonlinear \(Schr\ddot{o}ndinger\) equation. Phys. Rev. Lett. 51, 2171 (1983)CrossRefGoogle Scholar
  43. 43.
    Hasegawa, A.: Optical Solitons in Fiber, Springer Tract in Modern Physics, vol. 116. Springer, Berlin (1989)Google Scholar
  44. 44.
    Mvogo, A., Tambue, A., Ben-Bolie, G.H., Kofane, T.C.: Localized modulated wave solutions in diffusive glucose–insulin systems. Phys. Lett. A 380, 2154 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Moukam, F.M., Inack, E.M., Yamakou, E.M.: Localized nonlinear excitations in diffusive Hindmarsh–Rose neural networks. Phys. Rev. E 89, 052919 (2014)CrossRefGoogle Scholar
  46. 46.
    Ghomsi, P.G., Tameh Berinyoh, T.J., Moukam Kakmeni, F.M.: Ionic wave propagation and collision in an excitable circuit model of microtubules. Chaos 28, 023106 (2018)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Nozaki, K., Bekki, N.: Exact solutions of the generalized Ginzburg–Landau equation. J. Phys. Soc. Jpn. 53, 1581–1582 (1984)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Pereira, N.R., Stenflo, L.: Soliton in the damped nonlinear Schrodinger equation. Phys. Fluids 20, 1735–1743 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Zdravkovic, S., Zekovic, S., Bugay, A.N., Sataric, M.V.: Localized modulated waves and longitudinal model of microtubules. Appl. Maths. Comput. 285, 248–259 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Dauxois, T., Peyrard, M., Bishop, A.R.: Dynamics and thermodynamics of a nonlinear model for DNA denaturation. Phys. Rev. E. 47, 684 (1993)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Clovis Ntahkie Takembo
    • 1
    Email author
  • Alain Mvogo
    • 1
  • H. P. Ekobena Fouda
    • 1
  • T. C. Kofane
    • 2
    • 3
  1. 1.Laboratory of Biophysics, Department of Physics, Faculty of ScienceUniversity of Yaounde IYaoundéCameroon
  2. 2.The Abdus Salam International Centre for Theoretical PhysicsTriesteItaly
  3. 3.Laboratory of Mechanics, Department of Physics, Faculty of ScienceUniversity of Yaounde IYaoundeCameroon

Personalised recommendations