Advertisement

Nonlinear Dynamics

, Volume 95, Issue 2, pp 1035–1052 | Cite as

Axonal sodium and potassium conductance density determines spiking dynamical properties of regular- and fast-spiking neurons

  • Wen Zhang
  • Boqiang Fan
  • Divyansh Agarwal
  • Tun Li
  • Yuguo YuEmail author
Original Paper
  • 118 Downloads

Abstract

Compared with regular-spiking (RS) neurons, the action potentials (APs) of fast-spiking (FS) neurons are characterized by narrow spike durations and unusually fast decay dynamics of dV/dt process. However, quantitative measure of accurate sodium and potassium densities accounting for spike shape in the axon initial segment (AIS) where action potentials are initiated in both RS and FS cells is not well explored. Here, axonal recordings showed that the averaged axonal spike half-height duration of RS cells is significantly larger (Matlab anova1, \(p < 0.001\)) than that of FS cells. The averaged dV/dt ratio of RS cells is significantly lower (Matlab anova1, \(p < 0.001\)) than that of FS cells. We have reproduced axonal APs by cortical Hodgkin–Huxley axonal models constrained by a set of experimentally observed properties of RS and FS cells. The model predicts that sodium channel conductance \({g}_{\mathrm{Na}}\) in RS AIS is in a range of 1000–4000 pS/\(\upmu \text {m}^{2}\) and potassium channel conductance \({g}_{\mathrm{K}}\) is in a range of 30–200 pS/\(\upmu \text {m}^{2}\) in order to produce energy-efficient RS action potentials with major properties matching experimental observations of pyramidal cells. The model predicts that \({g}_{\mathrm{Na}}\) is within 1000–2500 pS/\(\upmu \text {m}^{2}\) and \({g}_{\mathrm{K}}\) ranges within 300–1000 pS/\(\upmu \text {m}^{2}\) for AIS of FS cells. The AP duration and efficiency are nonlinearly regulated by the ratio of \({g}_{\mathrm{Na}}/{g}_{\mathrm{K}}\). We performed patch-clamp recordings on both RS and FS cortical axons and observed that \({g}_{\mathrm{Na}}\) was approximately \(1620.4\pm 770\,\hbox {pS}/\upmu \text {m}^{2}\) for RS AIS and \(803.7\pm 351.5\,\hbox {pS}/\upmu \text {m}^{2}\) for FS AIS. The \({g}_{\mathrm{K}}\) was \(189.6\pm 75.8\,\hbox {pS}/\upmu \text {m}^{2}\) for the RS AIS and \(524.6\pm 281.6\,\hbox {pS}/\upmu \text {m}^{2}\) for the FS AIS. Partial drug-mediated inhibition of sodium or potassium channels significantly decreases or enlarges the AP duration and dV/dt ratio of both RS and FS cells, respectively, suggesting that sodium and potassium conductance density in cortical axons may be critical in determining the dynamical features of AP profiles in FS and RS cells.

Keywords

Pyramidal cell Interneuron Action potential Sodium conductance density 

Notes

Acknowledgements

YY thanks for the support from the National Natural Science Foundation of China (81761128011, 31571070), Shanghai Science and Technology Committee support (16410722600), the program for the Professor of Special Appointment (Eastern Scholar SHH1140004) at Shanghai Institutions of Higher Learning, the Research Fund for the Doctoral Program of Higher Education of China (1322051) and Omics-based precision medicine of epilepsy entrusted by the Key Research Project of the Ministry of Science and Technology of China (Grant No. 2016YFC0904400) for their support. Thanks to Dr. Guojie Qu and Xin Fu for their help in revision.

Author Contributions

YY and WZ designed research; WZ, DA, TL and BF performed experimental recordings; YY and BF conducted computational studies; WZ, BF and YY performed data analysis; YY, WZ and DA wrote the paper. All authors reviewed the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interests.

Supplementary material

11071_2018_4613_MOESM1_ESM.pdf (80 kb)
Supplementary material 1 (pdf 79 KB)

References

  1. 1.
    Alle, H., Geiger, J.R.: Combined analog and action potential coding in hippocampal mossy fibers. Science 311(5765), 1290–1293 (2006).  https://doi.org/10.1126/science.1119055 Google Scholar
  2. 2.
    Alle, H., Roth, A., Geiger, J.R.: Energy-efficient action potentials in hippocampal mossy fibers. Science 325(5946), 1405–1408 (2009).  https://doi.org/10.1126/science.1174331 Google Scholar
  3. 3.
    Attwell, D., Laughlin, S.B.: An energy budget for signaling in the grey matter of the brain. J. Cereb. Blood Flow Metab. 21(10), 1133–1145 (2001).  https://doi.org/10.1097/00004647-200110000-00001 Google Scholar
  4. 4.
    Bender, K.J., Trussell, L.O.: Axon initial segment \(\text{ Ca }^{2+}\) channels influence action potential generation and timing. Neuron 61(2), 259–271 (2009).  https://doi.org/10.1016/j.neuron.2008.12.004 Google Scholar
  5. 5.
    Bhattacharjee, A., Kaczmarek, L.K.: For \(\text{ K }^{+}\) channels, \(\text{ Na }^{+}\) is the new \(\text{ Ca }^{2+}\). Trends Neurosci. 28(8), 422–428 (2005).  https://doi.org/10.1016/j.tins.2005.06.003 Google Scholar
  6. 6.
    Carter, B.C., Bean, B.P.: Sodium entry during action potentials of mammalian neurons: incomplete inactivation and reduced metabolic efficiency in fast-spiking neurons. Neuron 64(6), 898–909 (2009).  https://doi.org/10.1016/j.neuron.2009.12.011 Google Scholar
  7. 7.
    Cauli, B., Audinat, E., Lambolez, B., Angulo, M.C., Ropert, N., Tsuzuki, K., Rossier, J.: Molecular and physiological diversity of cortical nonpyramidal cells. J. Neurosci. 17(10), 3894–3906 (1997)Google Scholar
  8. 8.
    Coggan, J.S., Sejnowski, T.J., Prescott, S.A.: Cooperativity between remote sites of ectopic spiking allows afterdischarge to be initiated and maintained at different locations. J. Comput. Neurosci. 39(1), 17–28 (2015).  https://doi.org/10.1007/s10827-015-0562-8 Google Scholar
  9. 9.
    Colbert, C.M., Johnston, D.: Axonal action-potential initiation and \(\text{ Na }^{+}\) channel densities in the soma and axon initial segment of subicular pyramidal neurons. J. Neurosci. 16(21), 6676–6686 (1996)Google Scholar
  10. 10.
    Colbert, C.M., Pan, E.: Ion channel properties underlying axonal action potential initiation in pyramidal neurons. Nat. Neurosci. 5(6), 533–538 (2002).  https://doi.org/10.1038/nn857 Google Scholar
  11. 11.
    Connors, B.W., Gutnick, M.J.: Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci. 13(3), 99–104 (1990).  https://doi.org/10.1016/0166-2236(90)90185-D Google Scholar
  12. 12.
    Eyal, G., Mansvelder, H.D., de Kock, C.P., Segev, I.: Dendrites impact the encoding capabilities of the axon. J. Neurosci. 34(24), 8063–8071 (2014).  https://doi.org/10.1523/JNEUROSCI.5431-13.2014 Google Scholar
  13. 13.
    Foehring, R.C., Lorenzon, N.M., Herron, P., Wilson, C.J.: Correlation of physiologically and morphologically identified neuronal types in human association cortex in vitro. J. Neurophysiol. 66(6), 1825–1837 (1991)Google Scholar
  14. 14.
    Gibson, J.R., Beierlein, M., Connors, B.W.: Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402(6757), 75–79 (1999).  https://doi.org/10.1038/47035 Google Scholar
  15. 15.
    Gupta, A., Wang, Y., Markram, H.: Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287(5451), 273–278 (2000)Google Scholar
  16. 16.
    Hasenstaub, A., Otte, S., Callaway, E., Sejnowski, T.J.: Metabolic cost as a unifying principle governing neuronal biophysics. Proc. Natl. Acad. Sci. USA 107(27), 12329–12334 (2010).  https://doi.org/10.1073/pnas.0914886107 Google Scholar
  17. 17.
    Hestrin, S., Armstrong, W.E.: Morphology and physiology of cortical neurons in layer I. J. Neurosci. 16(17), 5290–5300 (1996)Google Scholar
  18. 18.
    Hines, M.L., Carnevale, N.T.: The NEURON simulation environment. Neural Comput. 9(6), 1179–1209 (1997)Google Scholar
  19. 19.
    Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952)Google Scholar
  20. 20.
    Hu, H., Jonas, P.: A supercritical density of Na(+) channels ensures fast signaling in GABAergic interneuron axons. Nat. Neurosci. 17(5), 686–693 (2014).  https://doi.org/10.1038/nn.3678 Google Scholar
  21. 21.
    Hu, W., Tian, C., Li, T., Yang, M., Hou, H., Shu, Y.: Distinct contributions of Na(v)1.6 and Na(v)1.2 in action potential initiation and backpropagation. Nat. Neurosci. 12(8), 996–1002 (2009).  https://doi.org/10.1038/nn.2359 Google Scholar
  22. 22.
    Huguenard, J.R., Hamill, O.P., Prince, D.A.: Sodium channels in dendrites of rat cortical pyramidal neurons. Proc. Natl. Acad. Sci. USA 86(7), 2473–2477 (1989)Google Scholar
  23. 23.
    Ilin, V., Malyshev, A., Wolf, F., Volgushev, M.: Fast computations in cortical ensembles require rapid initiation of action potentials. J. Neurosci. 33(6), 2281–2292 (2013).  https://doi.org/10.1523/JNEUROSCI.0771-12.2013 Google Scholar
  24. 24.
    Inda, M.C., DeFelipe, J., Munoz, A.: Voltage-gated ion channels in the axon initial segment of human cortical pyramidal cells and their relationship with chandelier cells. Proc. Natl. Acad. Sci. USA 103(8), 2920–2925 (2006)Google Scholar
  25. 25.
    Kaczorowski, G.J., Knaus, H.G., Leonard, R.J., McManus, O.B., Garcia, M.L.: High-conductance calcium-activated potassium channels; structure, pharmacology, and function. J. Bioenerg. Biomembr. 28(3), 255–267 (1996)Google Scholar
  26. 26.
    Kole, M.H., Ilschner, S.U., Kampa, B.M., Williams, S.R., Ruben, P.C., Stuart, G.J.: Action potential generation requires a high sodium channel density in the axon initial segment. Nat. Neurosci. 11(2), 178–186 (2008).  https://doi.org/10.1038/nn2040 Google Scholar
  27. 27.
    Kole, M.H., Letzkus, J.J., Stuart, G.J.: Axon initial segment Kv1 channels control axonal action potential waveform and synaptic efficacy. Neuron 55(4), 633–647 (2007).  https://doi.org/10.1016/j.neuron.2007.07.031 Google Scholar
  28. 28.
    Komada, M., Soriano, P.: [Beta]IV-spectrin regulates sodium channel clustering through ankyrin-G at axon initial segments and nodes of Ranvier. J. Cell Biol. 156(2), 337–348 (2002)Google Scholar
  29. 29.
    Li, T., Tian, C., Scalmani, P., Frassoni, C., Mantegazza, M., Wang, Y., Shu, Y.: Action potential initiation in neocortical inhibitory interneurons. PLoS Biol. 12(9), e1001944 (2014).  https://doi.org/10.1371/journal.pbio.1001944 Google Scholar
  30. 30.
    Lien, C.C., Jonas, P.: Kv3 potassium conductance is necessary and kinetically optimized for high-frequency action potential generation in hippocampal interneurons. J. Neurosci. 23(6), 2058–2068 (2003)Google Scholar
  31. 31.
    Mainen, Z.F., Joerges, J., Huguenard, J.R., Sejnowski, T.J.: A model of spike initiation in neocortical pyramidal neurons. Neuron 15(6), 1427–1439 (1995)Google Scholar
  32. 32.
    Mainen, Z.F., Sejnowski, T.J.: Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382(6589), 363–366 (1996).  https://doi.org/10.1038/382363a0 Google Scholar
  33. 33.
    Martina, M., Jonas, P.: Functional differences in \(\text{ Na }^{+}\) channel gating between fast-spiking interneurones and principal neurones of rat hippocampus. J. Physiol. (Lond.) 505(3), 593–603 (1997).  https://doi.org/10.1111/j.1469-7793.1997.593ba.x Google Scholar
  34. 34.
    Martina, M., Schultz, J.H., Ehmke, H., Monyer, H., Jonas, P.: Functional and molecular differences between voltage-gated \(\text{ K }^{+}\) channels of fast-spiking interneurons and pyramidal neurons of rat hippocampus. J. Neurosci. 18(20), 8111–8125 (1998)Google Scholar
  35. 35.
    McCormick, D.A., Connors, B.W., Lighthall, J.W., Prince, D.A.: Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. J. Neurophysiol. 54(4), 782–806 (1985)Google Scholar
  36. 36.
    McCormick, D.A., Huguenard, J.R.: A model of the electrophysiological properties of thalamocortical relay neurons. J. Neurophysiol. 68(4), 1384–1400 (1992)Google Scholar
  37. 37.
    McCormick, D.A., Shu, Y., Yu, Y.: Neurophysiology: Hodgkin and Huxley model—still standing? Nature 445(7123), E1–2 (2007).  https://doi.org/10.1038/nature05523 (discussion E2–3)
  38. 38.
    Mountcastle, V.B., Talbot, W.H., Sakata, H., Hyvarinen, J.: Cortical neuronal mechanisms in flutter-vibration studied in unanesthetized monkeys. Neuronal periodicity and frequency discrimination. J. Neurophysiol. 32(3), 452–484 (1969)Google Scholar
  39. 39.
    Nowak, L.G., Azouz, R., Sanchez-Vives, M.V., Gray, C.M., McCormick, D.A.: Electrophysiological classes of cat primary visual cortical neurons in vivo as revealed by quantitative analyses. J. Neurophysiol. 89(3), 1541–1566 (2003).  https://doi.org/10.1152/jn.00580.2002 Google Scholar
  40. 40.
    Palmer, L.M., Stuart, G.J.: Site of action potential initiation in layer 5 pyramidal neurons. J. Neurosci. 26(6), 1854–1863 (2006).  https://doi.org/10.1523/JNEUROSCI.4812-05.2006 Google Scholar
  41. 41.
    Ratte, S., Hong, S.G., De Schutter, E., Prescott, S.A.: Impact of neuronal properties on network coding: roles of spike initiation dynamics and robust synchrony transfer. Neuron 78(5), 758–772 (2013).  https://doi.org/10.1016/j.neuron.2013.05.030 Google Scholar
  42. 42.
    Rudy, B., McBain, C.J.: Kv3 channels: voltage-gated K+ channels designed for high-frequency repetitive firing. Trends Neurosci. 24(9), 517–526 (2001)Google Scholar
  43. 43.
    Rieke, F., Warland, D., Steveninck, R.D.R.V., Bialek, W.: Spikes: Exploring the Neural Code. MIT Press, Cambridge (1999)zbMATHGoogle Scholar
  44. 44.
    Sah, P., Faber, E.S.: Channels underlying neuronal calcium-activated potassium currents. Prog. Neurobiol. 66(5), 345–353 (2002). S0301008202000047 [pii]Google Scholar
  45. 45.
    Schmidt-Hieber, C., Bischofberger, J.: Fast sodium channel gating supports localized and efficient axonal action potential initiation. J. Neurosci. 30(30), 10233–10242 (2010).  https://doi.org/10.1523/JNEUROSCI.6335-09.2010 Google Scholar
  46. 46.
    Sengupta, B., Faisal, A.A., Laughlin, S.B., Niven, J.E.: The effect of cell size and channel density on neuronal information encoding and energy efficiency. J. Cereb. Blood Flow Metab. 33(9), 1465–1473 (2013).  https://doi.org/10.1038/jcbfm.2013.103 Google Scholar
  47. 47.
    Sengupta, B., Stemmler, M., Laughlin, S.B., Niven, J.E.: Action potential energy efficiency varies among neuron types in vertebrates and invertebrates. PLoS Comput. Biol. 6, e1000840 (2010).  https://doi.org/10.1371/journal.pcbi.1000840 MathSciNetGoogle Scholar
  48. 48.
    Seutin, V., Engel, D.: Differences in \(\text{ Na }^{+}\) conductance density and \(\text{ Na }^{+}\) channel functional properties between dopamine and GABA neurons of the rat substantia nigra. J. Neurophysiol. 103(6), 3099–3114 (2010).  https://doi.org/10.1152/jn.00513.2009 Google Scholar
  49. 49.
    Shu, Y., Duque, A., Yu, Y., Haider, B., McCormick, D.A.: Properties of action-potential initiation in neocortical pyramidal cells: evidence from whole cell axon recordings. J. Neurophysiol. 97(1), 746–760 (2007).  https://doi.org/10.1152/jn.00922.2006 Google Scholar
  50. 50.
    Shu, Y., Hasenstaub, A., Duque, A., Yu, Y., McCormick, D.A.: Modulation of intracortical synaptic potentials by presynaptic somatic membrane potential. Nature 441(7094), 761–765 (2006).  https://doi.org/10.1038/nature04720 Google Scholar
  51. 51.
    Shu, Y., Yu, Y., Yang, J., McCormick, D.A.: Selective control of cortical axonal spikes by a slowly inactivating \(\text{ K }^{+}\) current. Proc. Natl. Acad. Sci. USA 104(27), 11453–11458 (2007).  https://doi.org/10.1073/pnas.0702041104 Google Scholar
  52. 52.
    Stocker, M.: Ca(2+)-activated \(\text{ K }^{+}\) channels: molecular determinants and function of the SK family. Nat. Rev. Neurosci. 5(10), 758–770 (2004).  https://doi.org/10.1038/nrn1516 Google Scholar
  53. 53.
    Stuart, G., Schiller, J., Sakmann, B.: Action potential initiation and propagation in rat neocortical pyramidal neurons. J. Physiol. 505(Pt 3), 617–632 (1997)Google Scholar
  54. 54.
    Yu, Y., Herman, P., Rothman, D. L., Agarwal, D., Hyder, F.: Evaluating the gray and white matter energy budgets of human brain function. J. Cereb. Blood Flow Metab. https://doi.org/10.1177/0271678X17708691 (2017)
  55. 55.
    Yu, Y., Hill, A.P., McCormick, D.A.: Warm body temperature facilitates energy efficient cortical action potentials. PLoS Comput. Biol. 8(4), e1002456 (2012).  https://doi.org/10.1371/journal.pcbi.1002456 Google Scholar
  56. 56.
    Yu, Y., Maureira, C., Liu, X., McCormick, D.: P/Q and N channels control baseline and spike-triggered calcium levels in neocortical axons and synaptic boutons. J. Neurosci. 30(35), 11858–11869 (2010).  https://doi.org/10.1523/JNEUROSCI.2651-10.2010 Google Scholar
  57. 57.
    Yu, Y., Shu, Y., McCormick, D.A.: Cortical action potential backpropagation explains spike threshold variability and rapid-onset kinetics. J. Neurosci. 28(29), 7260–7272 (2008).  https://doi.org/10.1523/jneurosci.1613-08.2008 Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Medical Neurobiology, School of Life Science and Human Phenome Institute, Institutes of Brain Science, Institute of Science and Technology for Brain-Inspired IntelligenceFudan UniversityShanghaiChina
  2. 2.Department of Genomics and Computational Biology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA
  3. 3.Institute of Neuroscience and State Key Laboratory of NeuroscienceShanghai Institutes for Biological SciencesShanghaiChina

Personalised recommendations