Advertisement

Nonlinear Dynamics

, Volume 95, Issue 2, pp 1027–1033 | Cite as

Rational solutions and lump solutions to a non-isospectral and generalized variable-coefficient Kadomtsev–Petviashvili equation

  • Jian-Guo LiuEmail author
  • Mostafa Eslami
  • Hadi Rezazadeh
  • Mohammad Mirzazadeh
Original Paper

Abstract

In this work, a non-isospectral and variable-coefficient Kadomtsev–Petviashvili equation is considered using Hirota’s bilinear form and a direct assumption with arbitrary functions. Analytical rational solutions in light of positive quadratic functions and lump solutions of the variable-coefficient Kadomtsev–Petviashvili equation are obtained. These lump solutions describe two types of characters by some three-dimensional graphs and contour plots, which contain bright lump wave and bright–dark lump wave. Meanwhile, periodic structure of the lump wave is also shown.

Keywords

Rational solutions Lump solutions Variable-coefficient Kadomtsev–Petviashvili equation Hirota’s bilinear form 

Notes

Compliance with ethical standards

Conflict of interests

The authors declare that there are no conflict of interests regarding the publication of this article.

Ethical standards

The authors state that this research complies with ethical standards. This research does not involve either human participants or animals.

References

  1. 1.
    Osman, M.S., Wazwaz, A.M.: An efficient algorithm to construct multi-soliton rational solutions of the (2+ 1)-dimensional KdV equation with variable coefficients. Appl. Math. Comput. 321, 282–289 (2018)MathSciNetGoogle Scholar
  2. 2.
    Wazwaz, A.M., El-Tantawy, S.A.: A new (3+1)-dimensional generalized Kadomtsev–Petviashvili equation. Nonlinear Dyn. 84(2), 1107–1112 (2016)MathSciNetGoogle Scholar
  3. 3.
    Lan, Z.Z., Gao, B., Du, M.J.: Bilinear forms and dark soliton behaviors for a higher-order variable-coefficient nonlinear Schrödinger equation in an inhomogeneous alpha helical protein. Wave. Random. Complex. (2017).  https://doi.org/10.1080/17455030.2017.1409914
  4. 4.
    Wazwaz, A.M.: Compact and noncompact physical structures for the ZK-BBM equation. Appl. Math. Comput. 169(1), 713–725 (2017)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Wang, C.J.: Lump solution and integrability for the associated Hirota bilinear equation. Nonlinear Dyn. 87, 2635–2642 (2017)MathSciNetGoogle Scholar
  6. 6.
    Wazwaz, A.M.: Abundant solutions of various physical features for the (2 + 1)-dimensional modified KdV-Calogero-Bogoyavlenskii-Schiff equation. Nonlinear Dyn. 89(3), 1727–1732 (2017)MathSciNetGoogle Scholar
  7. 7.
    Lan, Z.Z.: Multi-soliton solutions for a (2 + 1)-dimensional variable-coefficient nonlinear schrödinger equation. Appl. Math. Lett. 86, 243–248 (2018)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Wazwaz, A.M.: A two-mode modified KdV equation with multiple soliton solutions. Appl. Math. Lett. 70, 1–6 (2017)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Jia, S.L., Gao, Y.T., Ding, C.C., Deng, G.F.: Solitons for a (2 + 1)-dimensional Sawada–Kotera equation via the Wronskian technique. Appl. Math. Lett. 74, 193–198 (2017)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Wazwaz, A.M.: Two-mode fifth-order KdV equations: necessary conditions for multiple-soliton solutions to exist. Nonlinear Dyn. 87(3), 1685–1691 (2017)MathSciNetGoogle Scholar
  11. 11.
    Huang, L.L., Chen, Y.: Lump solutions and interaction phenomenon for (2 + 1)-dimensional Sawada–Kotera equation. Commun. Theor. Phys. 67(5), 473–478 (2017)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Wazwaz, A.M.: A new integrable equation that combines the KdV equation with the negative-order KdV equation. Math. Method. Appl. Sci. 41(1), 80–87 (2017).  https://doi.org/10.1002/mma.4595 MathSciNetzbMATHGoogle Scholar
  13. 13.
    Wazwaz, A.M.: Painlevé analysis for a new integrable equation combining the modified CalogeroBogoyavlenskiiSchiff (mCBS) equation with its negative-order form. Nonlinear Dyn. 91(2), 877–883 (2018)zbMATHGoogle Scholar
  14. 14.
    Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg-de Vries equation. Phys. Rev. Lett. 19, 1095–1097 (1967)zbMATHGoogle Scholar
  15. 15.
    Xu, S., He, J., Wang, L.: The darboux transformation of the derivative nonlinear schrödinger equation. J. Phys. A-Math. Theor. 44(30), 6629–6636 (2011)Google Scholar
  16. 16.
    Liu, S.J., Tang, X.Y., Lou, S.Y.: Multiple Darboux–Bcklund transformations via truncated Painlevé expansion and Lie point symmetry approach. Chin. Phys. B 27(6), 060201 (2018)Google Scholar
  17. 17.
    Hirota, R.: Exact solutions of the Korteweg-de Vries equation for multiple collision of solitons. Phys. Rev. Lett. 27, 1192–1194 (1971)zbMATHGoogle Scholar
  18. 18.
    Zayed, E.M.E., Gepreel, K.A.: The \((G/G)\)-expansion method for finding traveling wave solutions of nonlinear partial differential equations in mathematical physics. J. Math. Phys. 50(1), 013502-013502-12 (2009)MathSciNetGoogle Scholar
  19. 19.
    Liu, J.G., Zhou, L., He, Y.: Multiple soliton solutions for the new (2+1)-dimensional Korteweg-de Vries equation by multiple exp-function method. Appl. Math. Lett. 80, 71–78 (2018)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Tang, Y.N., Tao, S.Q., Guan, Q.: Lump solitons and the interaction phenomena of them for two classes of nonlinear evolution equations. Nonlinear Dyn. 89, 429–442 (2017)Google Scholar
  21. 21.
    Wazwaz, A.M., Osman, M.S.: Analyzing the combined multi-waves polynomial solutions in a two-layer-liquid medium. Comput. Math. Appl. 76(2), 276–283 (2018)MathSciNetGoogle Scholar
  22. 22.
    Su, J.J., Gao, Y.T., Jia, S.L.: Solitons for a generalized sixth-order variable-coefficient nonlinear Schrödinger equation for the attosecond pulses in an optical fiber. Commun. Nonlinear Sci. 50, 128–141 (2017)MathSciNetGoogle Scholar
  23. 23.
    Wazwaz, A.M.: Multiple soliton solutions for (2 + 1)-dimensional Sawada-Kotera and Caudrey-Dodd-Gibbon equations. Math. Method. Appl. Sci. 34(13), 1580–1586 (2011)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Lan, Z.Z., Gao, B.: Lax pair, infinitely many conservation laws and solitons for a (2 + 1)-dimensional Heisenberg ferromagnetic spin chain equation with time-dependent coefficients. Appl. Math. Lett. 79, 6–12 (2018)MathSciNetGoogle Scholar
  25. 25.
    Wazwaz, A.M.: A variety of negative-order integrable KdV equations of higher orders. Wave. Random. Complex. (2018).  https://doi.org/10.1080/17455030.2017.1420270
  26. 26.
    Yang, J.Y., Ma, W.X., Qin, Z.: Lump and lump-soliton solutions to the (2 + 1)-dimensional ito equation. Anal. Math. Phys. 8, 1–10 (2017)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Wazwaz, A.M., El-Tantawy, S.A.: New (3 + 1)-dimensional equations of Burgers type and Sharma–Tasso–Olvertype: multiple-soliton solutions. Nonlinear Dyn. 87(4), 2457–2461 (2017)zbMATHGoogle Scholar
  28. 28.
    Wazwaz, A.M.: Negative-order integrable modified KdV equations of higher orders. Nonlinear Dyn. 93(3), 1371–1376 (2018)zbMATHGoogle Scholar
  29. 29.
    Tan, W., Dai, Z.D., Dai, H.P.: Dynamical analysis of lump solution for the (2 + 1)d ito equation. Therm. Sci. 21(4), 1673–1679 (2017)Google Scholar
  30. 30.
    Zou, L., Yu, Z.B., Tian, S.F., Feng, L.L., Li, J.: Lump solutions with interaction phenomena in the (2 + 1)-dimensional ito equation. Mod. Phys. Lett. B 32(7), 1850104 (2018)MathSciNetGoogle Scholar
  31. 31.
    Zhang, H.Q., Ma, W.X.: Lump solutions to the (2 + 1)-dimensional Sawada–Kotera equation. Nonlinear Dyn. 87, 2305–2310 (2017)MathSciNetGoogle Scholar
  32. 32.
    Ma, W.X.: Lump-type solutions to the (3 + 1)-dimensional Jimbo–Miwa equation. Int. J. Nonlinear Sci. Num. 17, 355–359 (2016)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Gilson, C.R., Nimmo, J.J.C.: Lump solutions of the BKP equation. Phys. Lett. A 147(8–9), 472–476 (1990)MathSciNetGoogle Scholar
  34. 34.
    Chen, M.D., Li, X., Wang, Y., Li, B.: A pair of resonance stripe solitons and lump solutions to a reduced (3 + 1)-dimensional nonlinear evolution equation. Commun. Theor. Phys. 67(6), 595–600 (2017)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Sun, H.Q., Chen, A.H.: Lump and lump-kink solutions of the (3 + 1)-dimensional Jimbo-Miwa and two extended Jimbo–Miwa equations. Appl. Math. Lett. 68, 55–61 (2017)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Ma, W.X., Yong, X., Zhang, H.Q.: Diversity of interaction solutions to the (2 + 1)-dimensional Ito equation. Comput. Math. Appl. (2017).  https://doi.org/10.1016/j.camwa.2017
  37. 37.
    Kadomtsev, B.B., Petviashvili, V.I.: On the stability of solitary waves in weakly dispersive media. Sov. Phys. Dokl. 15, 539–541 (1970)zbMATHGoogle Scholar
  38. 38.
    Kuznetsov, E.A.: Wave collapse in plasmas and fluids. Chaos 6(3), 381–390 (1996)zbMATHGoogle Scholar
  39. 39.
    Liu, Y., Wang, X.P.: Nonlinear stability of solitary waves of a generalized Kadomtsev-Petviashvili equation. Commun. Math. Phys. 183(2), 253–266 (1997)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Belashov, V.Y.: Dynamics of KP equation solitons in media with low-frequency wave field stochastic fluctuations. Phys. Lett. A 197A, 282–289 (1995)Google Scholar
  41. 41.
    Belashov, V.Y., Belashova, E.S.: Nonlinear dynamics of 3d beams of fast magnetosonic waves propagating in the ionospheric and magnetospheric plasma. Geomagn. Aeronomy. 56(6), 716–723 (2016)Google Scholar
  42. 42.
    Abdeljabbar, A., Trung, T.D.: Pfaffian solutions to a generalized KP system with variable coefficients. Appl. Math. Sci. 10(48), 2351–2368 (2016)Google Scholar
  43. 43.
    Wazwaz, A.M.: Multiple-soliton solutions for a (3 + 1)-dimensional generalized KP equation. Commun. Nonlinear Sci. Numer. Simul. 17(2), 491–495 (2012)MathSciNetzbMATHGoogle Scholar
  44. 44.
    Abdeljabbar, A., Ma, W.X., Yildirim, A.: Determinant solutions to a (3 + 1)-dimensional generalized KP equation with variable coefficients. Chin. Ann. Math. B 33(5), 641–650 (2012)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Mirzazadeh, M.: A couple of solutions to a (3 + 1)-dimensional generalized KP equation with variable coefficients by extended transformed rational function method. Electron. J. Math. Anal. Appl. 3(1), 188–194 (2015)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.College of ComputerJiangxi University of Traditional Chinese MedicineJiangxiChina
  2. 2.School of scienceBeijing University of Posts and TelecommunicationsBeijingChina
  3. 3.Department of Mathematics, Faculty of Mathematical SciencesUniversity of MazandaranBabolsarIran
  4. 4.Faculty of Engineering TechnologyAmol University of Special Modern TechnologiesAmolIran
  5. 5.Department of Engineering Sciences, Faculty of Technology and Engineering, East of GuilanUniversity of GuilanRudsar-VajargahIran

Personalised recommendations