Advertisement

Nonlinear Dynamics

, Volume 95, Issue 2, pp 971–981 | Cite as

Control of catastrophic bifurcations of SSR in a hybrid series compensated system

  • R. C. MalaEmail author
  • Nagesh Prabhu
  • H. V. Gururaja Rao
Original Paper
  • 74 Downloads

Abstract

Series compensation of the transmission line increases the power flow capability of the system. Hybrid series compensation is a combination of active and passive series compensation provided by static synchronous series compensator with energy storage (SSSC-ES) and capacitor, respectively. This paper investigates the presence of bifurcations of subsynchronous resonance (SSR) in such a system. The results show that, as the series compensation level is varied, the system without SSSC-ES experiences periodic and quasiperiodic oscillations eventually leading to the catastrophic bifurcation. With the inclusion of SSSC-ES into the system, the number of periodic bifurcations of SSR reduces. This paper proposes a novel composite subsynchronous modal voltage injection (CSMVI) technique using SSSC-ES which controls catastrophic bifurcations of SSR. The CSMVI employs modal speed deviations that are derived from multi-mass section speed deviations and is used to modulate the reactive voltage injection of SSSC-ES. The study system for the analysis of SSR is IEEE First Benchmark model. Validation of the results obtained from bifurcation theory is carried out by performing the transient simulation using MATLAB/SIMULINK.

Keywords

Bifurcation Composite Subsynchronous Modal Voltage Injection (CSMVI) Modal speed deviations Subsynchronous Resonance (SSR) Static Synchronous Series Compensator with energy storage (SSSC-ES) 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflict of interest.

References

  1. 1.
    Nayfeh, A.H., Harb, A.M., Chin, C.M.: Bifurcation in a power system model. Int. J. Bifurc. Chaos 6, 497–512 (1996)CrossRefzbMATHGoogle Scholar
  2. 2.
    Chiang, H.D.: Application of bifurcation analysis to power systems. In: Chen G., Hill D.J., Yu X. (eds) Bifurcation Control. Lecture Notes in Control and Information Science, vol. 293. Springer, Berlin (2003)Google Scholar
  3. 3.
    Padiyar, K.R., Prabhu, N.: Analysis of Subsynchronous Resonance with Three Level Twelve Pulse VSC Based SSSC. IEEE TENCON, Bangalore (2003)CrossRefGoogle Scholar
  4. 4.
    Thirumalaivasan, R., Janaki, M., Prabhu, N.: Damping of SSR using subsynchronous current suppressor with SSSC. IEEE Trans. Power Syst. 28(1), 6474 (2013)CrossRefGoogle Scholar
  5. 5.
    Thirumalaivasan, R., Janaki, M., Xu, Y.: Kalman filter based detection and mitigation of subsynchronous resonance with SSSC. IEEE Trans. Power Syst. 32(2), 1400–1409 (2017)CrossRefGoogle Scholar
  6. 6.
    Bongiorno, M., Svensson, J., ngquist, L.: On control of static synchronous series compensator for SSR mitigation. IEEE Trans. Power Electron. 23(2), 735–743 (2008)CrossRefGoogle Scholar
  7. 7.
    Rai, D., Faried, S.O., Ramakrishna, G., Aty Edris, A.: An SSSC-based hybrid series compensation scheme capable of damping of subsynchronous resonance. IEEE Trans. Power Deliv. 27(2), 531–540 (2012)CrossRefGoogle Scholar
  8. 8.
    Arsoy, A., Liu, Y., Chen, S., Yang, Z., Crow, M.L., Ribeiro, P.F.: Dynamic performance of a static synchronous compensator with energy storage. In: Proceedings of the IEEE Power Engineering Society Winter Meeting, pp. 605–610 (2001)Google Scholar
  9. 9.
    Anderson, P.M., Agrawal, B.L., Van Ness, J.E.: Subsynchronous Resonance in Power Systems. IEEE Press, New York (1989)Google Scholar
  10. 10.
    Padiyar, K.R.: Analysis of Subsynchronous Resonance in Power Systems. Kluwer Academic Publishers, Boston (1999)CrossRefGoogle Scholar
  11. 11.
    Nayfeh, A.H., Harb, A.M., Chin, C.M., Hamdan, A.M.A., Mili, L.: Application of bifurcation theory to subsynchronous resonance in power systems. Int. J. Bifurc. Chaos 8, 157–172 (1998)CrossRefzbMATHGoogle Scholar
  12. 12.
    Iravani, M.R., Semlyen, A.: Hopf bifurcations in torsional dynamics. IEEE Trans. Power Syst. 7, 2836 (1992)Google Scholar
  13. 13.
    Zhu, W., Mohler, R.R., Spee, R., Mittelstadt, W.A., Maratukulam, D.: Hopf bifurcations in a SMIB power system with SSR. IEEE Trans. Power Syst. 11, 15791584 (1996)CrossRefGoogle Scholar
  14. 14.
    Harb, A.M., Widyan, M.S.: Controlling chaos and bifurcation of subsynchronous resonance in power system. Nonlinear Anal. Model. Control 7(2), 1536 (2002)zbMATHGoogle Scholar
  15. 15.
    Widyan, M.S.: Controlling chaos and bifurcations of SMIB power system experiencing SSR phenomenon using SSSC. Int. J. Electr. Power Energy Syst. 49, 66–75 (2013)CrossRefGoogle Scholar
  16. 16.
  17. 17.
    Dhooge, A., Govaerts, W., Kuznestov, Y.A., Meijer, H.G., Sautois, B.: New features of the software MATCONT for the bifurcation analysis of dynamical systems. Math. Comput. Model. Dyn. Syst. 14(2), 147–175 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Mala, R.C., Prabhu, N., Gururaja Rao, H.V.: Impact of SSSC-ES on bifurcations of SSR. Energy Procedia 117C, 559–566 (2017)CrossRefGoogle Scholar
  19. 19.
    Ali, H.: Nayfeh and Balakumar Balachandran: Applied Nonlinear Dynamics. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2004)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Manipal Institute of TechnologyMAHEManipalIndia
  2. 2.NMAM Institute of Technology, NitteKarkalaIndia

Personalised recommendations