Advertisement

Nonlinear Dynamics

, Volume 95, Issue 2, pp 919–942 | Cite as

Determination of thrusts to generate artificial equilibrium points in binary systems with applications to a planar solar sail

  • A. K. de AlmeidaJr.Email author
  • A. F. B. A. Prado
  • T. Yokoyama
Original Paper
  • 174 Downloads

Abstract

In this work, the artificial equilibrium points for a general two-body system are derived, visualized, and summarized as functions of the direction of the thrust, for several directions. The results for the Sun-Earth system are also presented. Planar solar sail applications are also considered.

Keywords

Astrodynamics Restricted three-body problem Nonlinear systems Artificial equilibrium point Solar sail 

Notes

Acknowledgements

The authors wish to express their appreciation for the financial support from the Coordination for the Improvement of Higher Education Personnel (CAPES) and the support provided by Grants 406841/2016-0, 301338/2016-7, and 305834/2013-4 from the National Council for Scientific and Technological Development (CNPq), Grants 2016/24561-0 and 2016/14665-2 from São Paulo Research Foundation (FAPESP).

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript.

References

  1. 1.
    Dusek, Hermann M.: Motion in the vicinity of libration points of a generalized restricted three-body model. Prog. Astronaut. Rocket. 54, 17–37 (1966)zbMATHGoogle Scholar
  2. 2.
    Tsiolkovsky, K.E.: Extension of man into outer space. In: Proceedings of Symposium on Jet Propulsion, vol. 2. United Scientific and Technical Press (1936)Google Scholar
  3. 3.
    Tsander, K.: From a Scientific Heritage. NASA Technical Translation No TTf-541, NASA, Washington, DC (1967)Google Scholar
  4. 4.
    Forward, R.L.: Statite—a spacecraft that does not orbit. J. Spacecr. Rockets 28(5), 606 (1991)CrossRefGoogle Scholar
  5. 5.
    Simmons, J.F.L., McDonald, A.J.C., Brown, J.C.: The restricted 3-body problem with radiation pressure. Celest. Mech. 35, 145 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    McInnes, C.R., McDonald, A.J.C., Simmons, J.F.L., MacDonald, E.W.: Solar sail parking in restricted three-body systems. J. Guid. Control Dyn. 17(2), 399 (1994)CrossRefzbMATHGoogle Scholar
  7. 7.
    McInnes, C.R.: Dynamics, stability, and control of displaced non-Keplerian orbits. J. Guid. Control Dyn. 21(5), 799 (1998)CrossRefGoogle Scholar
  8. 8.
    Broschart, S.B., Scheeres, D.J.: Control of hovering spacecraft near small bodies: application to asteroid 25143 Itokawa. J. Guid. Control Dyn. 28(2), 343–354 (2005)CrossRefGoogle Scholar
  9. 9.
    Bu, S., Li, S., Yang, H.: Artificial equilibrium points in binary asteroid systems with continuous low-thrust. Astrophys. Space Sci. 362, 137 (2017)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bombardelli, C., Pelaez, J.: On the stability of artificial equilibrium points in the circular restricted three-body problem. Celest. Mech. Dyn. Astron. 109(1), 13–26 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Ranjana, K., Kumar, V.: On the artificial equilibrium points in a generalized restricted problem of three bodies. Int. J. Astron. Astrophys. 3, 508–516 (2013)CrossRefGoogle Scholar
  12. 12.
    Aliasi, G., Mengali, G., Quarta, A.A.: Artificial equilibrium points for a generalized sail in the circular restricted three-body problem. Celest. Mech. Dyn. Astron. 110(4), 343–368 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    de Almeida Jr., A.K., Prado, A.F.B.A., Sanchez, D.M., Yokoyama, T.: Searching for artificial equilibrium points to place satellites above and below \(L_3\) in the Sun–Earth system. Rev. Mex. Astron. Astrofis. 53, 349 (2017)Google Scholar
  14. 14.
    Baoying, H., McInnes, C.R.: Solar sail halo orbits at the sunearth artificial l1 point. Celest. Mech. Dyn. Astron. 94, 155 (2006)Google Scholar
  15. 15.
    Waters, T.J., McInnes, C.R.: Periodic orbits above the ecliptic in the solar-sail restricted three-body problem. J. Guid. Control Dyn. 30(3), 687 (2007)CrossRefGoogle Scholar
  16. 16.
    Baig, S., McInnes, C.R.: Artificial halo orbits for low-thrust propulsion spacecraft. Celest. Mech. Dyn. Astron. 104, 321 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Farres, A., Jorba, A.: Dynamics, geometry and solar sails. Indag. Math. 27(5), 1245 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Goebel, D.M., Katz, I.: Fundamentals of Electric Propulsion, Ion and Hall Thrusters. Wiley, New Jersey (2008)CrossRefGoogle Scholar
  19. 19.
    McInnes, C.R.: Solar Sailing Technology, Dynamics and Mission Applications. Springer, Berlin (2004)Google Scholar
  20. 20.
    Ueno, K.: Thrust measurement of pure magnetic sail. Trans. JSASS Space Tech. Jpn. 7(26), 65–69 (2009)Google Scholar
  21. 21.
    Zubrin, R.M., Andrews, D.G.: Magnetic sails and interplanetary travel. J. Spacecr. Rockets 28(2), 197–203 (1991).  https://doi.org/10.2514/3.26230 CrossRefGoogle Scholar
  22. 22.
    Mengali, G., Quarta, A.A.: Non-Keplerian orbits for electric sails. Celest. Mech. Dyn. Astron. 105, 179195 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Janhunen, P.: Electric sail for spacecraft propulsion. J. Propuls. Power 20(4), 763–764 (2004)CrossRefGoogle Scholar
  24. 24.
    Janhunen, P., Sandroos, A.: Simulation study of solar wind push on a charged wire: basis of solar wind electric sail propulsion. Ann. Geophys. 25, 755–767 (2007)CrossRefGoogle Scholar
  25. 25.
    Yamakawa, H.: Magneto-plasma sail: an engineering satellite concept and its application for outer planet missions. Acta Astron. 59(8–11), 777 (2006)CrossRefGoogle Scholar
  26. 26.
    Symon, Keith R.: Mechanics, 2nd edn. Campus Ltda, Rio de Janeiro (1986)zbMATHGoogle Scholar
  27. 27.
    Luzum, Brian, et al.: The IAU 2009 system of astronomical constants: the report of the IAU working group on numerical standards for Fundamental Astronomy. Celest. Mech. Dyn. Astron. 110, 293 (2011)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.INPE: Instituto Nacional de Pesquisas EspaciaisSão José dos CamposBrazil
  2. 2.UNESP: Universidade Estadual PaulistaRio ClaroBrazil

Personalised recommendations