Nonlinear Dynamics

, Volume 95, Issue 2, pp 893–903 | Cite as

Consensus of delayed multi-agent dynamical systems with stochastic perturbation via dual-stage impulsive approach

  • Shasha YangEmail author
  • Yanbing Liu
  • Yunpeng Xiao
  • Tao Wu
Original Paper


This paper investigates the problem of consensus for delayed multi-agent systems with stochastic perturbation via dual-stage impulsive approach. A novel dual-stage impulsive control technique is adopted in the field of consensus of multi-agent systems. Furthermore, the effects of stochastic perturbation have been taken into consideration simultaneously in the model, which provide a more piratical framework for the consensus of delayed multi-agent systems. Parameter uncertainties are also discussed in the research. Finally, we present the simulation results to verify the correctness of the proposed control mechanism.


Consensus of multi-agent systems Stochastic disturbance Dual-stage impulsive control Parameter uncertainty 



The work is jointly supported by the National Natural Science Foundation of China (Grant No. 61876200) and Program for Innovation Team Building at Institutions of Higher Education in Chongqing (KJTD201312).


  1. 1.
    Ma, Q.: Cooperative control of multi-agent systems with unknown control directions. Appl. Math. Comput. 292, 240–252 (2017)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Ma, T.D., Zhang, L.Y., Gu, Z.: Further studies on impulsive consensus of multi-agent nonlinear systems with control gain error. Nerorcomputing 190, 140–146 (2016)CrossRefGoogle Scholar
  3. 3.
    Aragues, R., Cortes, J., Sagues, C.: Distributed consensus on robot networks for dynamically merging featur-based maps. IEEE Trans. Robot. 28(4), 840–854 (2012)CrossRefGoogle Scholar
  4. 4.
    Ma, Q., Xu, S., Lewis, F.L.: Cooperative output regulation of singular heterogeneous multiagent systems. IEEE Trans. Cybern. 46(6), 1471–1475 (2016)CrossRefGoogle Scholar
  5. 5.
    Li, H., Liao, X., Chen, G.: Finite-Time leader-following consensus for second-order multi-agent systems with nonlinear dynamics. Int. J. Control Autom. Syst. 11(2), 422–426 (2013)CrossRefGoogle Scholar
  6. 6.
    Li, C., Yu, W., Huang, T.: Impulsive synchronization schemes of stochastic complex networks with switching topology: average time approach. Neural Netw. 54, 85–94 (2014)CrossRefzbMATHGoogle Scholar
  7. 7.
    Li, H., Liao, X., Chen, G., Dong, Z., Hill, D., Huang, T.: Event-triggered asynchronous intermittent communication strategy for synchronization in complex networks. Neural Netw. 66, 1–10 (2015)CrossRefzbMATHGoogle Scholar
  8. 8.
    Thanou, D., Kokiopoulou, E., Pu, Y.: Distributed average consensus with quantization refinement. IEEE Trans. Signal Process. 61(1), 194–205 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ren, W., Beard, R.W., Atkins, E.M.: A survey of consensus problems in multi-agent coordination. In: Proceedings of the American Control Conference, 1859–1864 (2005)Google Scholar
  10. 10.
    Ming, P., Liu, J., Tan, S., Li, S., Shang, L., Yu, X.: Consensus stabilization in stochastic multi-agent systems with markovian switching topology, noises, and delay. Neruocomputing 200, 1–10 (2016)CrossRefGoogle Scholar
  11. 11.
    Li, C., Yu, X., Yu, W., et al.: Distributed event-triggered scheme for economic dispatch in smart grids. IEEE Trans. Ind. Inform. 12(5), 1775–1785 (2016)CrossRefGoogle Scholar
  12. 12.
    Li, Y., Liao, X.: Impulsive synchronization and parameter mismatch of the three-variable autocatalater model. Phys. Lett. A 366, 52–60 (2007)CrossRefGoogle Scholar
  13. 13.
    Ma, T., Zhang, H., Fu, J.: Exponential synchronization of stochastic impulsive pertubed chaotic Lur’s systems with time-varying delay and parametric uncertainty. Chin. Phys. B 17(12), 4407–4417 (2008)CrossRefGoogle Scholar
  14. 14.
    Wu, X., Cai, J., Wang, M.: Robust synchornization of chaotic horizontal platform systems with phase difference. J. Sound Vib. 305(3), 481–491 (2007)CrossRefzbMATHGoogle Scholar
  15. 15.
    Huang, H., Zhang, H., Fu, J.: Master-slave synchronization of general Lur’s system with time-varying delay and parameter uncertainty. Int. J. Bifuc. Chaos 16(2), 281–294 (2006)CrossRefGoogle Scholar
  16. 16.
    Liu, Z.W., Guan, Z.H.: Consensus of multi-agent networks with aperiodic sampled communication via impulsive algorithms using position-only measurements. IEEE Trans. Autom. Control 57(10), 2639–2643 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Han, G.S., He, D.X., Guan, Z.H.: Multi-consensus of multi-agent systems with various intelligences using switched impulsive potocols. Inf. Sci. 349, 188–198 (2016)CrossRefzbMATHGoogle Scholar
  18. 18.
    Zhou, H., Wang, Z.H.: Containment control for multi-agent systems via impulsive algorithms without velocity measurements. IET Control Theory Appl. 8(17), 2033–2044 (2014)CrossRefGoogle Scholar
  19. 19.
    Wang, Y.W., Yi, J.W.: Consensus in second-order multi-agent systems via impulsive control using position-only information with heterogeneous delays. IET Control Theory Appl. 9(3), 336–345 (2015)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Chen, W.H., Jiang, Z., Zhong, J.: On designing decentralized impulsive controllers for synchronization of complex dynamical networks with nonidentical nodes and coupling delays. J. Frankl. Inst. 351(8), 4084–4110 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Zhang, W., Li, C.: Synchronization of neural networks with stochastic pertubation via aperiodically intermittent control. Neual Netw. 71, 105–111 (2015)CrossRefzbMATHGoogle Scholar
  22. 22.
    Zhang, W., Li, C., Huang, T., et al.: Synchronization of memristor-based coupling recurrent neural networks with time-varying delays and impulses. IEEE Trans. Neural Netw. Learn. Syst. 26(12), 3308–3313 (2015)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Qi, J., Li, C., Huang, T., Zhang, W.: Exponential stability of switched time-varying delayed neural networks with all modes being unstable. Neural Process. Lett. 43, 553–565 (2016)CrossRefGoogle Scholar
  24. 24.
    Haeri, M., Dehghani, M.: Impulsive syncronization of different hyperchaotic systems. Chaos Solitions Fractals 38(1), 120–131 (2008)CrossRefGoogle Scholar
  25. 25.
    Zhang, H., Ma, T., et al.: Robuts golbal expoential synchronization of uncertain chaotic delayed neural networks via dual-stage impulsive control. IEEE Trans. Syst. Man Cyberen. B 40(3), 831–843 (2010)CrossRefGoogle Scholar
  26. 26.
    Zong, G.D., Yang, D., Hou, L.L., Wang, Q.Z.: robust finite-time \(H_\infty \) control for Markovian jump systems with partially known transition probabilities. J. Frankl. Inst. 350(6), 1562–1578 (2013)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Shasha Yang
    • 1
    Email author
  • Yanbing Liu
    • 2
  • Yunpeng Xiao
    • 3
  • Tao Wu
    • 4
  1. 1.Electronic Information and Networking Research InstituteChongqing University of Posts and TelecommunicationsChongqingPeople’s Republic of China
  2. 2.College of Computer ScienceChongqing University of Posts and TelecommunicationsChongqingPeople’s Republic of China
  3. 3.School of Software EngineeringChongqing University of Posts and TelecommunicationsChongqingPeople’s Republic of China
  4. 4.School of Cyber Security and Information LawChongqing University of Posts and TelecommunicationsChongqingPeople’s Republic of China

Personalised recommendations