Advertisement

Nonlinear Dynamics

, Volume 95, Issue 2, pp 859–873 | Cite as

A novel bit permutation-based image encryption algorithm

  • Saiyma Fatima RazaEmail author
  • Vishal Satpute
Original Paper
  • 113 Downloads

Abstract

In recent years, substantial work has been done for developing image encryption algorithms. Image encryption requires handling of large data, which needs computationally efficient algorithm. Chaos-based image encryption has been proposed against conventional encryption techniques. Cryptosystem using chaotic systems for image encryption has proven to be computationally effective. In this paper, a new approach to bit permutation in image encryption has been proposed using a three-dimensional puzzle along with chaos for further diffusion and confusion. The proposed encryption algorithm is tested for security and validity using various analyses. The result for tests proves that the proposed algorithm provides security against statistical and differential attacks.

Keywords

Rubik’s cube Chaos Image encryption Statistical attack Differential attack 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Aloka, S., Kehar, S.: A technique for image encryption using digital signature. Optics Commun. 218(4–6), 229–234 (2003)Google Scholar
  2. 2.
    Alvarez, E., Fernandez, A., Garcıa, P., Jiménez, J., Marcano, A.: New approach to chaotic encryption. Phys. Lett. A 263(4–6), 373–375 (1999)CrossRefGoogle Scholar
  3. 3.
    Arroyo, D., Li, C., Li, S., Alvarez, G., Halang, W.A.: Cryptanalysis of an image encryption scheme based on a new total shuffling algorithm. Chaos Solitons Fractals 41(5), 2613–2616 (2009)CrossRefzbMATHGoogle Scholar
  4. 4.
    Baptista, M.: Cryptography with chaos. Phys. lett. A 240(1–2), 50–54 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Boriga, R., Dăscălescu, A.C., Priescu, I.: A new hyperchaotic map and its application in an image encryption scheme. Signal Process. Image Commun. 29(8), 887–901 (2014)CrossRefGoogle Scholar
  6. 6.
    Chang, C.C., Hwang, M.S., Chen, T.S.: A new encryption algorithm for image cryptosystems. J. Syst. Softw. 58(2), 83–91 (2001)CrossRefGoogle Scholar
  7. 7.
    Chen, H.C., Guo, J.I., Huang, L.C., Yen, J.C.: Design and realization of a new signal security system for multimedia data transmission. EURASIP J. Appl. Signal Process. 2003, 1291–1305 (2003)Google Scholar
  8. 8.
    Chen, L., Wang, S.: Differential cryptanalysis of a medical image cryptosystem with multiple rounds. Comput. Biol. Med. 65, 69–75 (2015)CrossRefGoogle Scholar
  9. 9.
    Dang, P.P., Chau, P.M.: Image encryption for secure internet multimedia applications. IEEE Trans. Consum. Electron. 46(3), 395–403 (2000)CrossRefGoogle Scholar
  10. 10.
    Erdem, Y., Cem, K.M., Ezgi, Y.: A chaos-based image encryption algorithm with simple logical functions. Comput. Electr. Eng. 54, 471–483 (2016)CrossRefGoogle Scholar
  11. 11.
    Fridrich, J.: Symmetric ciphers based on two-dimensional chaotic maps. Int. J. Bifurc. Chaos 8(06), 1259–1284 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Fu, C., Lin, Bb, Miao, Ys, Liu, X., Chen, Jj: A novel chaos-based bit-level permutation scheme for digital image encryption. Optics Commun. 284(23), 5415–5423 (2011)CrossRefGoogle Scholar
  13. 13.
    Fu, C., Meng, Wh, Zhan, Yf, Zhu, Z.L., Lau, F.C., Chi, K.T., Ma, H.F.: An efficient and secure medical image protection scheme based on chaotic maps. Comput. Biol. Med. 43(8), 1000–1010 (2013)CrossRefGoogle Scholar
  14. 14.
    Gao, T., Chen, Z.: A new image encryption algorithm based on hyper-chaos. Phys. Lett. A 372(4), 394–400 (2008)CrossRefzbMATHGoogle Scholar
  15. 15.
    Guan, Z.H., Huang, F., Guan, W.: Chaos-based image encryption algorithm. Phys. Lett. A 346(1–3), 153–157 (2005)CrossRefzbMATHGoogle Scholar
  16. 16.
    Huang, X., Ye, G.: An efficient self-adaptive model for chaotic image encryption algorithm. Commun. Nonlinear Sci. Numer. Simul. 19(12), 4094–4104 (2014)CrossRefGoogle Scholar
  17. 17.
    Kwok, H., Tang, W.K.: A fast image encryption system based on chaotic maps with finite precision representation. Chaos Solitons Fractals 32(4), 1518–1529 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Li, C., Li, S., Lo, K.T.: Breaking a modified substitution-diffusion image cipher based on chaotic standard and logistic maps. Commun. Nonlinear Sci. Numer. Simul. 16(2), 837–843 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Li, C., Lo, K.T.: Optimal quantitative cryptanalysis of permutation-only multimedia ciphers against plaintext attacks. Signal Process. 91(4), 949–954 (2011)CrossRefzbMATHGoogle Scholar
  20. 20.
    Li, S., Li, C., Chen, G., Zhang, D., Bourbakis, N.G.: A general cryptanalysis of permutation-only multimedia encryption algorithms. IACRs Cryptol. ePrint Arch. Rep. 374, 2004 (2004)Google Scholar
  21. 21.
    Özkaynak, F., Özer, A.B.: Cryptanalysis of a new image encryption algorithm based on chaos. Optik Int. J. Light Electron Optics 127(13), 5190–5192 (2016)CrossRefGoogle Scholar
  22. 22.
    Pareek, N., Patidar, V., Sud, K.: Cryptography using multiple one-dimensional chaotic maps. Commun. Nonlinear Sci. Numer. Simul. 10(7), 715–723 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Rhouma, R., Belghith, S.: Cryptanalysis of a new image encryption algorithm based on hyper-chaos. Phys. Lett. A 372(38), 5973–5978 (2008)CrossRefzbMATHGoogle Scholar
  24. 24.
    Solak, E., Çokal, C., Yildiz, O.T., Biyikoǧlu, T.: Cryptanalysis of Fridrich’s chaotic image encryption. Int. J. Bifurc. Chaos 20(05), 1405–1413 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Wang, Y., Wong, K.W., Liao, X., Chen, G.: A new chaos-based fast image encryption algorithm. Appl. Soft Comput. 11(1), 514–522 (2011)CrossRefGoogle Scholar
  26. 26.
    Yang, H., Wong, K.W., Liao, X., Zhang, W., Wei, P.: A fast image encryption and authentication scheme based on chaotic maps. Commun. Nonlinear Sci. Numer. Simul. 15(11), 3507–3517 (2010)CrossRefzbMATHGoogle Scholar
  27. 27.
    Ye, R.: A novel chaos-based image encryption scheme with an efficient permutation-diffusion mechanism. Optics Commun. 284(22), 5290–5298 (2011)CrossRefGoogle Scholar
  28. 28.
    Zeghid, M., Machhout, M., Khriji, L., Baganne, A., Tourki, R.: A modified aes based algorithm for image encryption. World Acad. Sci. Eng. Technol. 27, 206–211 (2007)Google Scholar
  29. 29.
    Zhang, G., Liu, Q.: A novel image encryption method based on total shuffling scheme. Optics Commun. 284(12), 2775–2780 (2011)CrossRefGoogle Scholar
  30. 30.
    Zhang, L.B., Zhu, Z.L., Yang, B.Q., Liu, W.Y., Zhu, H.F., Zou, M.Y.: Cryptanalysis and improvement of an efficient and secure medical image protection scheme. Math. Probl. Eng. 2015, 1–11 (2015)Google Scholar
  31. 31.
    Zhang, Y., Xiao, D.: An image encryption scheme based on rotation matrix bit-level permutation and block diffusion. Commun. Nonlinear Sci. Numer. Simul. 19(1), 74–82 (2014)CrossRefzbMATHGoogle Scholar
  32. 32.
    Zhu, Zl, Zhang, W., Wong, Kw, Yu, H.: A chaos-based symmetric image encryption scheme using a bit-level permutation. Inf. Sci. 181(6), 1171–1186 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of ECEVisvesvaraya National Institute of TechnologyNagpurIndia

Personalised recommendations