Advertisement

Nonlinear Dynamics

, Volume 95, Issue 1, pp 101–115 | Cite as

Generalized modeling and character analyzing of composite fractional-order memristors in series connection

  • Zhang Guo
  • Gangquan SiEmail author
  • Xiang Xu
  • Kai Qu
  • Shuang Li
Original Paper

Abstract

Memristor is a type of memory device representing the relation between charge q and flux \(\varphi \). Recently, memristor, as well as other memristive elements and their corresponding fractional elements, have become very attractive in many applications, due to their unique behavior which cannot be obtained by using conventional elements. However, there are few studies about composite behaviors or characteristics of multiple memristive elements connected in series or parallel, especially for the fractional-order memristors. This paper focuses on analyzing the composite characteristics of two fractional-order memristors connected in series as well as concerning the window function. Under the applied sinusoidal current source, two charge-controlled memristors connected in series are adopted to theoretically demonstrate the variation of memristance and vi curves. The two fractional order \(\alpha \) and \(\beta \) are interpreted as two phase offset which makes the analysis much convenient. The obtained formulas of instantaneous memristance of composite memristor are derived and some influential factors are analyzed in detail. The further analyzing demonstrates that the composite memristor circuits behave as a new memristor with higher complexity and some typical phenomena are found especially for the pinched hysteresis loops in vi plane.

Keywords

Memristor Fractional order Series connection Composite characteristics 

Notes

Acknowledgements

This work is supported by Shaanxi Natural Science Foundation (Grant No: 2018JM5095), the Fundamental Research Funds for the Central Universities and the China Scholarship Council Fund (Grant No: 201806285022).

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Chua, L.: Memristor—the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507 (1971).  https://doi.org/10.1109/tct.1971.1083337 CrossRefGoogle Scholar
  2. 2.
    Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453(7191), 80 (2008).  https://doi.org/10.1038/nature06932 CrossRefGoogle Scholar
  3. 3.
    Biolek, D., Biolek, Z., Biolkova, V.: Pinched hysteretic loops of ideal memristors, memcapacitors and meminductors must be ’self-crossing’. Electron. Lett. 47(25), 1385 (2011).  https://doi.org/10.1049/el.2011.2913 CrossRefGoogle Scholar
  4. 4.
    Pershin, Y.V., Di Ventra, M.: Memory effects in complex materials and nanoscale systems. Adv. Phys. 60(2), 145 (2011).  https://doi.org/10.1080/00018732.2010.544961 CrossRefGoogle Scholar
  5. 5.
    Di Ventra, M., Pershin, Y.V., Chua, L.O.: Circuit elements with memory: memristors, memcapacitors, and meminductors. Proc. IEEE 97(10), 1717 (2009).  https://doi.org/10.1109/JPROC.2009.2021077 CrossRefGoogle Scholar
  6. 6.
    Ielmini, D.: Brain-inspired computing with resistive switching memory (RRAM): devices, synapses and neural networks. Microelectron. Eng. 190, 44 (2018).  https://doi.org/10.1016/j.mee.2018.01.009 CrossRefGoogle Scholar
  7. 7.
    Xia, L., Li, B., Tang, T., Gu, P., Chen, P.Y., Yu, S., Cao, Y., Wang, Y., Xie, Y., Yang, H.: MNSIM: simulation platform for memristor-based neuromorphic computing system. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 37(5), 1009 (2017).  https://doi.org/10.1109/TCAD.2017.2729466 CrossRefGoogle Scholar
  8. 8.
    Maan, A.K., Jayadevi, D.A., James, A.P.: A survey of memristive threshold logic circuits. IEEE Trans. Neural Netw. Learn. Syst. 28(8), 1734 (2017).  https://doi.org/10.1109/tnnls.2016.2547842 MathSciNetCrossRefGoogle Scholar
  9. 9.
    Maan, A.K., Kumar, D.S., Sugathan, S., James, A.P.: Memristive threshold logic circuit design of fast moving object detection. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 23(10), 2337 (2015).  https://doi.org/10.1109/tvlsi.2014.2359801 CrossRefGoogle Scholar
  10. 10.
    Dongale, T., Bagade, A., Mohite, S., Rananavare, A., Orlowski, M., Kamat, R., Rajpure, K.: Bipolar resistive switching with coexistence of mem-elements in the spray deposited \(\text{ CoFe }_{2}\text{ O }_{4}\) thin film. J. Mater. Sci. Mater. Electron. 29(4), 3231 (2017).  https://doi.org/10.1007/s10854-017-8258-7 CrossRefGoogle Scholar
  11. 11.
    Rajagopal, K., Karthikeyan, A., Srinivasan, A.: Dynamical analysis and FPGA implementation of a chaotic oscillator with fractional-order memristor components. Nonlinear Dyn. 91(3), 1491 (2017).  https://doi.org/10.1007/s11071-017-3960-9 CrossRefzbMATHGoogle Scholar
  12. 12.
    Rziga, F.O., Mbarek, K., Ghedira, S., Besbes, K.: The basic I–V characteristics of memristor model: simulation and analysis. Appl. Phys. A 123(4), 288 (2017).  https://doi.org/10.1007/s00339-017-0902-9 CrossRefGoogle Scholar
  13. 13.
    Fouda, M.E., Radwan, A.G.: Resistive-less memcapacitor-based relaxation oscillator. Int. J. Circuit Theory Appl. 43(7), 959 (2015).  https://doi.org/10.1002/cta.1984 CrossRefGoogle Scholar
  14. 14.
    Gomez Aguilar, J.F.: Behavior characteristics of a cap-resistor, memcapacitor, and a memristor from the response obtained of RC and RL electrical circuits described by fractional differential equations. Turk. J. Electr. Eng. Comput. Sci. 24(3), 1421 (2016).  https://doi.org/10.3906/elk-1312-49 CrossRefGoogle Scholar
  15. 15.
    Fouda, M.E., Radwan, A.G.: Memcapacitor response under step and sinusoidal voltage excitations. Microelectron. J. 45(11), 1372 (2014).  https://doi.org/10.1016/j.mejo.2014.08.002 CrossRefGoogle Scholar
  16. 16.
    Wang, G.Y., Cai, B.Z., Jin, P.P., Hu, T.L.: Memcapacitor model and its application in a chaotic oscillator. Chin. Phys. B 25(1), 010503 (2016).  https://doi.org/10.1088/1674-1056/25/1/010503 CrossRefGoogle Scholar
  17. 17.
    Yang, X.J., Machado, J.T., Cattani, C., Gao, F.: On a fractal LC-electric circuit modeled by local fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 47, 200 (2017).  https://doi.org/10.1016/j.cnsns.2016.11.017 CrossRefGoogle Scholar
  18. 18.
    Caputo, M.: Linear models of dissipation whose Q is almost frequency independent—II. Geophys. J. Int. 13(5), 529 (1967).  https://doi.org/10.1111/j.1365-246x.1967.tb02303.x CrossRefGoogle Scholar
  19. 19.
    Sun, H., Zhang, Y., Baleanu, D., Chen, W., Chen, Y.: A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. (2018).  https://doi.org/10.1016/j.cnsns.2018.04.019 CrossRefGoogle Scholar
  20. 20.
    Zhang, H., Wang, X.Y., Lin, X.H.: Stability and control of fractional chaotic complex networks with mixed interval uncertainties. Asian J. Control 19(1), 106 (2017).  https://doi.org/10.1002/asjc.1333 MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Wang, G., Zang, S., Wang, X., Yuan, F., Iu, H.H.C.: Memcapacitor model and its application in chaotic oscillator with memristor. Chaos Interdiscip. J. Nonlinear Sci. 27(1), 013110 (2017).  https://doi.org/10.1063/1.4973238 CrossRefzbMATHGoogle Scholar
  22. 22.
    Huang, S., Zhang, R., Chen, D.: Stability of nonlinear fractional-order time varying systems. J. Comput. Nonlinear Dyn. 11(3), 031007 (2016).  https://doi.org/10.1115/1.4031587 CrossRefGoogle Scholar
  23. 23.
    Chen, L., Cao, J., Wu, R., Machado, J.T., Lopes, A.M., Yang, H.: Stability and synchronization of fractional-order memristive neural networks with multiple delays. Neural Netw. 94, 76 (2017).  https://doi.org/10.1016/j.neunet.2017.06.012 CrossRefGoogle Scholar
  24. 24.
    Arqub, O.A.: Solutions of time-fractional Tricomi and Keldysh equations of Dirichlet functions types in Hilbert space. Numer. Methods Partial Differ. Equ. 34(5), 1759 (2017).  https://doi.org/10.1002/num.22236 MathSciNetCrossRefGoogle Scholar
  25. 25.
    Arqub, O.A.: Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm. Int. J. Numer. Methods Heat Fluid Flow 28(4), 828 (2018).  https://doi.org/10.1108/hff-07-2016-0278 CrossRefGoogle Scholar
  26. 26.
    Arqub, O.A.: Fitted reproducing kernel Hilbert space method for the solutions of some certain classes of time-fractional partial differential equations subject to initial and Neumann boundary conditions. Comput. Math. Appl. 73(6), 1243 (2017).  https://doi.org/10.1016/j.camwa.2016.11.032 MathSciNetCrossRefGoogle Scholar
  27. 27.
    Abdelouahab, M.S., Lozi, R., Chua, L.: Memfractance: a mathematical paradigm for circuit elements with memory. Int. J. Bifurc. Chaos 24(9), 1430023 (2014).  https://doi.org/10.1142/s0218127414300237 CrossRefzbMATHGoogle Scholar
  28. 28.
    Guo, Z., Si, G., Diao, L., Jia, L., Zhang, Y.: Generalized modeling of the fractional-order memcapacitor and its character analysis. Commun. Nonlinear Sci. Numer. Simul. 59, 177 (2018).  https://doi.org/10.1016/j.cnsns.2017.11.007 MathSciNetCrossRefGoogle Scholar
  29. 29.
    Machado, J.T., Galhano, A.M.: Generalized two-port elements. Commun. Nonlinear Sci. Numer. Simul. 42, 451 (2017).  https://doi.org/10.1016/j.cnsns.2016.05.030 CrossRefGoogle Scholar
  30. 30.
    Machado, J.T.: Fractional generalization of memristor and higher order elements. Commun. Nonlinear Sci. Numer. Simul. 18(2), 264 (2013).  https://doi.org/10.1016/j.cnsns.2012.07.014 MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Si, G., Diao, L., Zhu, J., Lei, Y., Babajide, O., Zhang, Y.: Modeling and character analyzing of current-controlled memristors with fractional kinetic transport. Commun. Nonlinear Sci. Numer. Simul. 48, 224 (2017).  https://doi.org/10.1016/j.cnsns.2016.12.030 CrossRefGoogle Scholar
  32. 32.
    Fouda, M.E., Radwan, A.G.: Fractional-order memristor response under DC and periodic signals. Circuits Syst. Signal Process. 34(3), 961 (2014).  https://doi.org/10.1007/s00034-014-9886-2 CrossRefGoogle Scholar
  33. 33.
    Pu, Y.F., Yuan, X., Yu, B.: Analog circuit implementation of fractional-order memristor: arbitrary-order lattice scaling fracmemristor. IEEE Trans. Circuits Syst. I Regul. Pap. (2018).  https://doi.org/10.1109/tcsi.2018.2789907
  34. 34.
    Qiyan, Z., Dongsheng, Y., Yan, L., Mengke, C.: Composite behaviors of dual meminductor circuits. Chin. Phys. B 24(11), 180 (2015).  https://doi.org/10.1088/1674-1056/24/11/110701 CrossRefGoogle Scholar
  35. 35.
    Wang, X.Y., Iu, H.H.C., Wang, G.Y., Liu, W.: Study on time domain characteristics of memristive RLC series circuits. Circuits Syst. Signal Process. 35(11), 4129 (2016).  https://doi.org/10.1007/s00034-016-0250-6 CrossRefzbMATHGoogle Scholar
  36. 36.
    Zhi, Z., Dongsheng, Y., Xiaoyuan, W.: Investigation on the dynamic behaviors of the coupled memcapacitor-based circuits. Chin. Phys. B 26(12), 179 (2017).  https://doi.org/10.1088/1674-1056/26/12/120701 CrossRefGoogle Scholar
  37. 37.
    Tavazoei, M.S.: A note on fractional-order derivatives of periodic functions. Automatica 46(5), 945 (2010).  https://doi.org/10.1016/j.automatica.2010.02.023 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Electrical Insulation and Power Equipment, Shaanxi Key Laboratory of Smart Grid, School of Electrical EngineeringXi’an Jiaotong UniversityXi’anChina

Personalised recommendations