Advertisement

Nonlinear Dynamics

, Volume 95, Issue 1, pp 57–72 | Cite as

A modified homotopy optimization for parameter identification in dynamic systems with backlash discontinuity

  • Borna Ghannadi
  • Reza Sharif Razavian
  • John McPhee
Original Paper
  • 159 Downloads

Abstract

Model-based control considers system dynamics to solve challenging control problems; recently, the amount of activity in developing model-based controllers is growing, specifically in rehabilitation robotics. The performance of this controller depends on how accurate the system dynamics has been modeled. Dynamic parameter identification (DPI) of the systems is required for optimal performance of the model-based controller. Current DPI methods are more suitable for systems with continuous dynamics. If any type of discontinuity (e.g., backlash) is present in the system, the DPI may have numerical problems for convergence. In this work, we propose a modified homotopy optimization to identify parameters of a system with mechanical discontinuity (i.e., backlash). The performance of the proposed method was first evaluated through a computer simulation on a system with sandwiched backlash. Results of the DPI showed that the proposed homotopy optimization can identify the discontinuous system parameters with a good accuracy. It was found that ignoring the backlash in the system dynamics imposes large errors in the system DPI. After verifying the proposed method using computer simulations, the DPI was implemented to identify the parameters of a rehabilitation robot with actuator backlash. The proposed method provided a better estimate of the system parameters compared to the no-backlash DPI of the experimental robot. Despite the noise in velocity and acceleration due to the numerical differentiation of the sampled angle measurements, the forward dynamics results are quite accurate for all of the tested configurations with the discontinuous backlash model.

Keywords

Parameter identification System dynamics Sandwiched backlash Homotopy optimization Rehabilitation robot 

Notes

Acknowledgements

We thank the anonymous reviewer who provided very helpful suggestions to improve the paper. This work was funded by the Canada Research Chairs (CRC) program and the Natural Sciences and Engineering Research Council of Canada (NSERC). The authors wish to thank Quanser Inc. for providing the upper extremity rehabilitation robot and Toronto Rehabilitation Institute (TRI) for collaborating.

References

  1. 1.
    Brown, P., McPhee, J.: A continuous velocity-based friction model for dynamics and control with physically meaningful parameters. J. Comput. Nonlinear Dyn. 11(5), 054502 (2016).  https://doi.org/10.1115/1.4033658 CrossRefGoogle Scholar
  2. 2.
    Chen, S., Billings, S.A., Grant, P.M.: Non-linear system identification using neural networks. Int. J. Control 51(6), 1191–1214 (1990).  https://doi.org/10.1080/00207179008934126 CrossRefzbMATHGoogle Scholar
  3. 3.
    Ding, M., Hirasawa, K., Kurita, Y., Takemura, H., Takamatsu, J., Mizoguchi, H., Ogasawara, T.: Pinpointed muscle force control in consideration of human motion and external force. In: 2010 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 739–744. IEEE (2010).  https://doi.org/10.1109/ROBIO.2010.5723418
  4. 4.
    Enikov, E., Stepan, G.: Microchaotic motion of digitally controlled machines. J. Vib. Control 4(4), 427–443 (1998).  https://doi.org/10.1177/107754639800400405 MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Ghannadi, B., Mehrabi, N., Sharif Razavian, R., McPhee, J., Razavian, R.S., McPhee, J.: Nonlinear model predictive control of an upper extremity rehabilitation robot using a two-dimensional human-robot interaction model. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 502–507. IEEE, Vancouver, British Columbia, Canada (2017).  https://doi.org/10.1109/IROS.2017.8202200
  6. 6.
    Jiang, Z.H., Ishida, T., Sunawada, M.: Neural network aided dynamic parameter identification of robot manipulators. In: 2006 IEEE International Conference on Systems, Man and Cybernetics, pp. 3298–3303. IEEE (2006).  https://doi.org/10.1109/ICSMC.2006.384627
  7. 7.
    Ljung, L.: System Identification: Theory for User, 2nd edn. PTR Prentice Hall Information and System Sciences Series (1987).  https://doi.org/10.1016/0005-1098(89)90019-8
  8. 8.
    Maciejasz, P., Eschweiler, J., Gerlach-Hahn, K., Jansen-Troy, A., Leonhardt, S.: A survey on robotic devices for upper limb rehabilitation. Journal of NeuroEngineering and Rehabilitation 11(3) (2014).  https://doi.org/10.1186/1743-0003-11-3
  9. 9.
    Nordin, M., Gutman, P.O.: Controlling mechanical systems with backlash–a survey. Automatica 38(10), 1633–1649 (2002).  https://doi.org/10.1016/S0005-1098(02)00047-X MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Nyarko, E.K., Scitovski, R.: Solving the parameter identification problem of mathematical models using genetic algorithms. Appl. Math. Comput. 153(3), 651–658 (2004).  https://doi.org/10.1016/S0096-3003(03)00661-1 MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Proietti, T., Crocher, V., Roby-Brami, A., Jarrasse, N.: Upper-limb robotic exoskeletons for neurorehabilitation: a review on control strategies. IEEE Rev. Biomed. Eng. 9, 4–14 (2016).  https://doi.org/10.1109/RBME.2016.2552201 CrossRefGoogle Scholar
  12. 12.
    Sharifi, M., Behzadipour, S., Vossoughi, G.: Nonlinear model reference adaptive impedance control for human-robot interactions. Control Eng. Pract. 32, 9–27 (2014).  https://doi.org/10.1016/j.conengprac.2014.07.001 CrossRefGoogle Scholar
  13. 13.
    Soderstrom, T., Stoica, P.G.: System Identification. Prentice-Hall International, Englewood Cliffs (1988)zbMATHGoogle Scholar
  14. 14.
    Sreenivasa, M., Ayusawa, K., Nakamura, Y.: Modeling and identification of a realistic spiking neural network and musculoskeletal model of the human arm, and an application to the stretch reflex. IEEE Trans. Neural Syst. Rehabil. Eng. 24(5), 591–602 (2016).  https://doi.org/10.1109/TNSRE.2015.2478858 CrossRefGoogle Scholar
  15. 15.
    Su, C.Y., Stepanenko, Y., Svoboda, J., Leung, T.: Robust adaptive control of a class of nonlinear systems with unknown backlash-like hysteresis. IEEE Trans. Autom. Control 45(12), 2427–2432 (2000).  https://doi.org/10.1109/9.895588 MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Tao, G., Kokotovic, P.V.: Adaptive Control of Systems with Actuator and Sensor Nonlinearities. Wiley-Interscience, New York (1996)zbMATHGoogle Scholar
  17. 17.
    Tao, G., Ma, X., Ling, Y.: Optimal and nonlinear decoupling control of systems with sandwiched backlash. Automatica 37(2), 165–176 (2001).  https://doi.org/10.1016/S0005-1098(00)00153-9 MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Taware, A., Tao, G.: Control of Sandwich Nonlinear Systems. Lecture Notes in Control and Information Sciences, vol. 288. Springer, Berlin (2006)Google Scholar
  19. 19.
    Thanh, T.D., Kotlarski, J., Heimann, B., Ortmaier, T.: Dynamics identification of kinematically redundant parallel robots using the direct search method. Mech. Mach. Theory 52, 277–295 (2012).  https://doi.org/10.1016/j.mechmachtheory.2012.02.002 CrossRefGoogle Scholar
  20. 20.
    Vyasarayani, C.P., Uchida, T., Carvalho, A., McPhee, J.: Parameter identification in dynamic systems using the homotopy optimization approach. Multibody Syst. Dyn. 26(4), 411–424 (2011).  https://doi.org/10.1007/s11044-011-9260-0 MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Vyasarayani, C.P., Uchida, T., McPhee, J.: Single-shooting homotopy method for parameter identification in dynamical systems. Phys. Rev. 85(3), 036,201 (2012).  https://doi.org/10.1103/PhysRevE.85.036201 CrossRefGoogle Scholar
  22. 22.
    Wu, J., Wang, J., You, Z.: An overview of dynamic parameter identification of robots. Robot. Comput. Integr. Manuf. 26(5), 414–419 (2010).  https://doi.org/10.1016/j.rcim.2010.03.013 CrossRefGoogle Scholar
  23. 23.
    Ye, M.: Parameter identification of dynamical systems based on improved particle swarm optimization. In: Intelligent Control and Automation, pp. 351–360. Springer Berlin Heidelberg (2006).  https://doi.org/10.1007/978-3-540-37256-1
  24. 24.
    Zhou, J., Wen, C.: Nonsmooth nonlinearities. In: Adaptive Backstepping Control of Uncertain Systems, Lecture Notes in Control and Information Sciences, vol. 372, pp. 83–96. Springer Berlin Heidelberg, Berlin, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-77807-3

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Systems Design EngineeringUniversity of WaterlooWaterlooCanada

Personalised recommendations