Advertisement

Nonlinear Dynamics

, Volume 94, Issue 4, pp 3067–3075 | Cite as

Effect of degree correlation on the thermal transport in complex networks

  • Kezhao Xiong
  • Chunhua Zeng
  • Zonghua Liu
Original Paper
  • 70 Downloads

Abstract

In this work, we present a complex network model to study thermal transport in the nanotube and nanowire networks, with nodes forming a random network. It is shown that the temperature distribution in complex networks can be manipulated by the degrees of two heat source nodes, and the change of network topology can induce a transition between negative (disassortative) and positive (assortative) degree correlations. A positive degree correlation (assortativity) will enhance thermal transport, in contrast to the uncorrelated networks (zero degree correlation), while a negative degree correlation (disassortativity) will weaken it. The underlying mechanisms have been analyzed, and a possible realization of the model in a nanoscale system is briefly discussed.

Keywords

Temperature distribution Thermal transport Degree correlation Complex networks 

Notes

Acknowledgements

This work was partially supported by the NNSF of China under Grant No. 11675056, the Candidate Talents Training Fund of Yunnan Province (Project Nos. 2015HB025 and 11665014) and the Natural Science Foundation of Yunnan Province (under 2017FB003).

Compliance with ethical standards

Conflict of interest

The authors have declared that no competing interests exist.

References

  1. 1.
    Li, N., Ren, J., Wang, L., Zhang, G., Hänggi, P., Li, B.: Colloquium: phononics: manipulating heat flow with electronic analogs and beyond. Rev. Mod. Phys. 84, 1045 (2012)CrossRefGoogle Scholar
  2. 2.
    Dubi, Y., Di Ventra, M.: Colloquium: heat flow and thermoelectricity in atomic and molecular junctions. Rev. Mod. Phys. 83, 131 (2011)CrossRefGoogle Scholar
  3. 3.
    Lepri, S., Livi, R., Politi, A.: Thermal conduction in classical low-dimensional lattices. Phys. Rep. 377, 1 (2003)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cui, L., Jeong, W., Hur, S., Matt, M., Klöckner, J.C., Pauly, F.: Quantized thermal transport in single-atom junctions. Science 355, 1192–1195 (2017)CrossRefGoogle Scholar
  5. 5.
    Gu, X., Wei, Y., Yin, X., Li, B., Yang, R.: Phononic thermal properties of two-dimensional materials (2017). arXiv preprint arXiv:1705.06156
  6. 6.
    Chang, C.W., Okawa, D., Majumdar, A., Zettl, A.: Solid-state thermal rectifier. Science 314, 1121–1124 (2006)CrossRefGoogle Scholar
  7. 7.
    Maldovan, M.: Phonon wave interference and thermal bandgap materials. Nat. Mater. 14, 667–674 (2015)CrossRefGoogle Scholar
  8. 8.
    Partanen, M., Tan, K.Y., Govenius, J., Lake, R.E., Mäkelä, M.K., Tanttu, T., Möttönen, M.: Quantum-limited heat conduction over macroscopic distances. Nat. Phys. 12, 460–464 (2016)CrossRefGoogle Scholar
  9. 9.
    Li, B., Wang, L., Casati, G.: Thermal diode: rectification of heat flux. Phys. Rev. Lett. 93, 184301 (2004)CrossRefGoogle Scholar
  10. 10.
    Guo, C., Wang, K., Zerah-Harush, E., Hamill, J., Wang, B., Dubi, Y., Xu, B.: Molecular rectifier composed of DNA with high rectification ratio enabled by intercalation. Nat. Chem. 8, 484–490 (2016)CrossRefGoogle Scholar
  11. 11.
    Wang, L., Li, B.: Thermal logic gates: computation with phonons. Phys. Rev. Lett. 99, 177208 (2007)CrossRefGoogle Scholar
  12. 12.
    Li, B., Wang, L., Casati, G.: Negative differential thermal resistance and thermal transistor. Appl. Phys. Lett. 88, 143501 (2006)CrossRefGoogle Scholar
  13. 13.
    Ben-Abdallah, P., Biehs, S.A.: Near-field thermal transistor. Phys. Rev. Lett. 112, 044301 (2014)CrossRefGoogle Scholar
  14. 14.
    Lee, B.Y., Sung, M.G., Lee, H., Namgung, S., Park, S.Y., Choi, D.S., Hong, S.: Integrated devices based on networks of nanotubes and nanowires. NPG Asia Mater. 2, 103–111 (2010)CrossRefGoogle Scholar
  15. 15.
    Cao, Q., Rogers, J.A.: Ultrathin films of single-walled carbon nanotubes for electronics and sensors: a review of fundamental and applied aspects. Adv. Mater. 21, 29 (2009)CrossRefGoogle Scholar
  16. 16.
    Kauffman, D.R., Star, A.: Carbon nanotube gas and vapor sensors. Angew. Chem. 47, 6550 (2008)CrossRefGoogle Scholar
  17. 17.
    Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47 (2002)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Amaral, L.A.N., Scala, A., Barthelemy, M., Stanley, H.E.: Classes of small-world networks. Proc. Natl. Acad. Sci. USA 97, 11149 (2000)CrossRefGoogle Scholar
  19. 19.
    Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509 (1999)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Liu, Y.Y., Slotine, J.J., Barabási, A.L.: Controllability of complex networks. Nature 473, 167 (2011)CrossRefGoogle Scholar
  21. 21.
    Yan, G., Tsekenis, G., Barzel, B., Slotine, J.J., Liu, Y.Y., Barabási, A.L.: Spectrum of controlling and observing complex networks. Nat. Phys. 11, 779 (2015)CrossRefGoogle Scholar
  22. 22.
    Yan, G., Ren, J., Lai, Y.C., Lai, C.H., Li, B.: Controlling complex networks: How much energy is needed? Phys. Rev. Lett. 108, 218703 (2012)CrossRefGoogle Scholar
  23. 23.
    Liu, Z., Li, B.: Heat conduction in simple networks: the effect of interchain coupling. Phys. Rev. E 76, 051118 (2007)CrossRefGoogle Scholar
  24. 24.
    Liu, Z., Wu, X., Yang, H., Gupte, N., Li, B.: Heat flux distribution and rectification of complex networks. New J. Phys. 12, 023016 (2010)CrossRefGoogle Scholar
  25. 25.
    Xiong, K., Liu, Z.: Temperature dependence of heat conduction coefficient in nanotube/nanowire networks. Chin. Phys. B 26, 098904 (2017)CrossRefGoogle Scholar
  26. 26.
    Boguná, M., Pastor-Satorras, R., Vespignani, A.: Absence of epidemic threshold in scale-free networks with degree correlations. Phys. Rev. Lett. 90, 028701 (2003)CrossRefGoogle Scholar
  27. 27.
    Pastor-Satorras, R., Vázquez, A., Vespignani, A.: Dynamical and correlation properties of the Internet. Phys. Rev. Lett. 87, 258701 (2001)CrossRefGoogle Scholar
  28. 28.
    Zhou, T., Yan, G., Wang, B.H.: Maximal planar networks with large clustering coefficient and power-law degree distribution. Phys. Rev. E 71, 046141 (2005)CrossRefGoogle Scholar
  29. 29.
    Shi, L., Zhu, H., Zhong, S., Shi, K., Cheng, J.: Cluster synchronization of linearly coupled complex networks via linear and adaptive feedback pinning controls. Nonlinear Dyn. 88, 859–870 (2017)CrossRefGoogle Scholar
  30. 30.
    Ravasz, E., Barabási, A.L.: Hierarchical organization in complex networks. Phys. Rev. E 67, 026112 (2003)CrossRefGoogle Scholar
  31. 31.
    Kumar, S., Murthy, J.Y., Alam, M.A.: Percolating conduction in finite nanotube networks. Phys. Rev. Lett. 95, 066802 (2005)CrossRefGoogle Scholar
  32. 32.
    López, E., Buldyrev, S.V., Havlin, S., Stanley, H.E.: Anomalous transport in scale-free networks. Phys. Rev. Lett. 94, 248701 (2005)CrossRefGoogle Scholar
  33. 33.
    Wu, Z., Braunstein, L.A., Havlin, S., Stanley, H.E.: Transport in weighted networks: partition into superhighways and roads. Phys. Rev. Lett. 96, 148702 (2006)CrossRefGoogle Scholar
  34. 34.
    Baughman, R.H., Zakhidov, A.A., De Heer, W.A.: Carbon nanotubes-the route toward applications. Science 297, 787 (2002)CrossRefGoogle Scholar
  35. 35.
    Zhang, D., Ryu, K., Liu, X., Polikarpov, E., Ly, J., Tompson, M.E., Zhou, C.: Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes. Nano Lett. 6, 1880 (2006)CrossRefGoogle Scholar
  36. 36.
    Wang, Y., Cao, J., Li, X., Alsaedi, A.: Edge-based epidemic dynamics with multiple routes of transmission on random networks. Nonlinear Dyn. 91, 403–420 (2018)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Ma, J., Tang, J.: A review for dynamics in neuron and neuronal network. Nonlinear Dyn. 89, 1569–1578 (2017)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Noh, J.D.: Percolation transition in networks with degree–degree correlation. Phys. Rev. E 76, 026116 (2007)CrossRefGoogle Scholar
  39. 39.
    Soffer, S.N., Vazquez, A.: Network clustering coefficient without degree-correlation biases. Phys. Rev. E 71, 057101 (2005)CrossRefGoogle Scholar
  40. 40.
    Xiang, J., Hu, K., Zhang, Y., Hu, T., Li, J.M.: Analysis and perturbation of degree correlation in complex networks. Europhys. Lett. 111, 48003 (2015)CrossRefGoogle Scholar
  41. 41.
    Newman, M.E.: Assortative mixing in networks. Phys. Rev. Lett. 89, 208701 (2002)CrossRefGoogle Scholar
  42. 42.
    Dorogovtsev, S.N., Ferreira, A.L., Goltsev, A.V.: Zero Pearson coefficient for strongly correlated growing trees. Phys. Rev. E 81, 031135 (2010)CrossRefGoogle Scholar
  43. 43.
    Ou, Q., Jin, Y.D., Zhou, T.: Power-law strength-degree correlation from resource-allocation dynamics on weighted networks. Phys. Rev. E 75, 021102 (2007)CrossRefGoogle Scholar
  44. 44.
    Kaburaki, H., Machida, M.: Thermal conductivity in one-dimensional lattices of Fermi–Pasta–Ulam type. Phys. Lett. A 181, 85 (1993)CrossRefGoogle Scholar
  45. 45.
    Lepri, S., Livi, R., Politi, A.: Heat conduction in chains of nonlinear oscillators. Phys. Rev. Lett. 78, 1897 (1997)CrossRefGoogle Scholar
  46. 46.
    Nosé, S.: A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511 (1984)CrossRefGoogle Scholar
  47. 47.
    Hoover, W.G.: Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695 (1985)CrossRefGoogle Scholar
  48. 48.
    Okabe, K., Inada, N., Gota, C., Harada, Y., Funatsu, T., Uchiyama, S.: Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. Nat. Commun. 3, 705 (2012)CrossRefGoogle Scholar
  49. 49.
    Emig, T.: Temperature distribution and heat radiation of patterned surfaces at short wavelengths. Phys. Rev. E 95, 052104 (2017)CrossRefGoogle Scholar
  50. 50.
    Dorogovtsev, S.N., Mendes, J.F.F., Samukhin, A.N.: Anomalous percolation properties of growing networks. Phys. Rev. E 64, 066110 (2001)CrossRefGoogle Scholar
  51. 51.
    Kim, J., Krapivsky, P.L., Kahng, B., Redner, S.: Infinite-order percolation and giant fluctuations in a protein interaction network. Phys. Rev. E 66, 055101(R) (2002)CrossRefGoogle Scholar
  52. 52.
    Liu, Z., Lai, Y.C., Ye, N., Dasgupta, P.: Connectivity distribution and attack tolerance of general networks with both preferential and random attachments. Phys. Lett. A 303, 337 (2002)CrossRefGoogle Scholar
  53. 53.
    Kim, B.J.: Performance of networks of artificial neurons: the role of clustering. Phys. Rev. E 69, 045101 (2004)CrossRefGoogle Scholar
  54. 54.
    Maslov, S., Sneppen, K.: Specificity and stability in topology of protein networks. Science 296, 910 (2002)CrossRefGoogle Scholar
  55. 55.
    Jin, C., Lan, H., Peng, L., Suenaga, K., Iijima, S.: Deriving carbon atomic chains from graphene. Phys. Rev. Lett. 102, 205501 (2009)CrossRefGoogle Scholar
  56. 56.
    Xu, H., Zhang, S., Anlage, S.M., Hu, L., Grner, G.: Frequency-and electric-field-dependent conductivity of single-walled carbon nanotube networks of varying density. Phys. Rev. B 77, 075418 (2008)CrossRefGoogle Scholar
  57. 57.
    Fuhrer, M.S., Nygård, J., Shih, L., Forero, M., Yoon, Y.G., Choi, H.J.: Crossed nanotube junctions. Science 288, 494 (2000)CrossRefGoogle Scholar
  58. 58.
    Prasher, R.S., Hu, X.J., Chalopin, Y., Mingo, N., Lofgreen, K., Volz, S.: Turning carbon nanotubes from exceptional heat conductors into insulators. Phys. Rev. Lett. 102, 105901 (2009)CrossRefGoogle Scholar
  59. 59.
    Salaway, R.N., Zhigilei, L.V.: Thermal conductance of carbon nanotube contacts: molecular dynamics simulations and general description of the contact conductance. Phys. Rev. B 94, 014308 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of PhysicsEast China Normal UniversityShanghaiPeople’s Republic of China
  2. 2.Institute of Physical and Engineering ScienceKunming University of Science and TechnologyKunmingPeople’s Republic of China
  3. 3.Department of Materials Science and EngineeringUniversity of CaliforniaBerkeleyUSA
  4. 4.Department of Mechanical EngineeringUniversity of Colorado BoulderBoulderUSA

Personalised recommendations