Advertisement

Nonlinear Dynamics

, Volume 94, Issue 4, pp 2969–2977 | Cite as

Impact of lattice’s self-anticipative density on traffic stability of lattice model on two lanes

  • Guanghan Peng
  • Shuhong Yang
  • Dongxue Xia
  • Xiaoqin Li
Original Paper
  • 105 Downloads

Abstract

The self-anticipative density (SAD) term is embedded to traffic modeling for two-lane freeway in this paper. In view of linear stability analysis, SAD effect on two lanes is uncovered from the linear stability condition, which reveals that SAD effect in two-lane system stabilizes traffic flow. Moreover, numerical simulation verifies that SAD effect can increase the traffic stability and depress the traffic jam efficiently in new two-lane lattice model.

Keywords

Lattice hydrodynamic model Self-anticipative density Numerical simulation Traffic flow 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 61673168).

Compliance with ethical standards

Conflict of interest

We guarantee that this work has no conflict of interest to other researches.

References

  1. 1.
    Newell, G.F.: A simplified car-following theory: a lower order model. Transp. Res. B 36, 195–205 (2002)CrossRefGoogle Scholar
  2. 2.
    Bando, M., Hasebe, K., Nakayama, A., Shibata, A., Sugiyama, Y.: Dynamical model of traffic congestion and numerical simulation. Phys. Rev. E 51, 1035–1042 (1995)CrossRefGoogle Scholar
  3. 3.
    Helbing, D., Tilch, B.: Generalized force model of traffic dynamics. Phys. Rev. E 58, 133–138 (1998)CrossRefGoogle Scholar
  4. 4.
    Jiang, R., Wu, Q., Zhu, Z.: Full velocity difference model for a car-following theory. Phys. Rev. E 64, 017101 (2001)CrossRefGoogle Scholar
  5. 5.
    Li, Z.P., Liu, Y.C., Liu, F.Q.: A dynamical model with next-nearest-neighbor interaction in relative velocity. Int. J. Modern Phys. C 18, 819–832 (2007)CrossRefGoogle Scholar
  6. 6.
    Li, Z.P., Zhang, R., Xu, S.Z., Qian, Y.Q., Xu, J.: Stability analysis of dynamic collaboration model with control signals on two lanes. Commun. Nonlinear Sci. Numer. Simul. 19, 4148–4160 (2014)CrossRefGoogle Scholar
  7. 7.
    Li, Z.P., Li, W.Z., Xu, S.Z., Qian, Y.Q.: Analyses of vehicle’s self-stabilizing effect in an extended optimal velocity model by utilizing historical velocity in an environment of intelligent transportation system. Nonlinear Dyn. 80, 529–540 (2015)CrossRefGoogle Scholar
  8. 8.
    Li, Z.P., Liu, L.M., Xu, S.Z., Qian, Y.Q.: Impact of driving aggressiveness on the traffic stability based on an extended optimal velocity mode. Nonlinear Dyn. 81, 2059–2070 (2015)CrossRefGoogle Scholar
  9. 9.
    Zhu, W.X., Yu, R.L.: A new car-following model considering the related factors of a gyroidal road. Physica A 393, 101–111 (2014)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Zhu, W.X., Zhang, L.D.: A speed feedback control strategy for car-following model. Physica A 413, 343–351 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Zhu, W.X.: Motion energy dissipation in traffic flow on a curved road. Int. J. Modern Phys. C 24, 1350046 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Zhu, W.X., Zhang, C.H.: Analysis of energy dissipation in traffic flow with a variable slope. Physica A 392, 3301–3307 (2013)CrossRefGoogle Scholar
  13. 13.
    Zhou, J., Shi, Z.K., Cao, J.L.: Nonlinear analysis of the optimal velocity difference model with reaction-time delay. Physica A 396, 77–87 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Zhou, J., Shi, Z.K., Cao, J.L.: An extended traffic flow model on a gradient highway with the consideration of the relative velocity. Nonlinear Dyn. 78, 1765–1779 (2014)CrossRefGoogle Scholar
  15. 15.
    Tang, T.Q., Shi, W.F., Shang, H.Y., Wang, Y.P.: A new car-following model with consideration of inter-vehicle communication. Nonlinear Dyn. 76, 2017–2023 (2014)CrossRefGoogle Scholar
  16. 16.
    Tang, T.Q., He, J., Yang, S.C., Shang, H.Y.: A car-following model accounting for the driver’s attribution. Physica A 413, 583–591 (2014)CrossRefGoogle Scholar
  17. 17.
    Tang, T.Q., Shi, W.F., Shang, H.Y., Wang, Y.P.: An extended car-following model with consideration of the reliability of inter-vehicle communication. Measurement 58, 286–293 (2014)CrossRefGoogle Scholar
  18. 18.
    Tang, T.Q., Huang, H.J., Shang, H.Y.: Influences of the driver’s bounded rationality on micro driving behavior, fuel consumption and emissions. Transp. Res. D 41, 423–432 (2015)CrossRefGoogle Scholar
  19. 19.
    Ge, H.X., Yu, J., Lo, S.M.: A control method for congested traffic in the car-following model. Chin. Phys. Lett. 29, 050502 (2012)CrossRefGoogle Scholar
  20. 20.
    Ge, H.X., Lv, F., Zheng, P.J., Cheng, R.J.: The time-dependent Ginzburg–Landau equation for car-following model considering anticipation-driving behavior. Nonlinear Dyn. 76, 1497–1501 (2014)CrossRefGoogle Scholar
  21. 21.
    Ge, H.X., Meng, X.P., Zhu, H.B., Li, Z.P.: Feedback control for car following model based on two-lane traffic flow. Physica A 408, 28–39 (2014)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Ge, H.X., Zheng, P.J., Wang, W., Cheng, R.J.: The car following model considering traffic jerk. Physica A 433, 274–278 (2015)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. J. Phys. I 2, 2221–2229 (1992)Google Scholar
  24. 24.
    Knospe, W., Santen, L., Schadschneider, A., Schreckenberg, M.: Disorder effects in cellular automaton for two-lane traffic. Physica A 265, 614–633 (1998)CrossRefGoogle Scholar
  25. 25.
    Nishinari, K., Takahashi, D.: Analytical properties of ultradiscrete Burgers equation and rule-184 cellular automaton. J. Phys. A 31, 5439–5450 (1998)CrossRefGoogle Scholar
  26. 26.
    Nishinari, K., Takahashi, D.: Multi-value cellular automaton models and metastable states in a congested phase. J. Phys. A 33, 7709–7720 (2000)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Jiang, R., Jia, B., Wu, Q.S.: Stochastic multi-value cellular automata models for bicycle flow. J. Phys. A 37, 2063–2072 (2004)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Zhang, X.Q., Wang, Y., Hu, Q.H.: Research and simulation on cellular automaton model of mixed traffic flow at intersection. Acta Physica Sin. 63, 10508 (2014)Google Scholar
  29. 29.
    Ge, H.X., Wu, S.Z., Cheng, R.J., Lo, S.M.: Theoretical analysis of a modified continuum model. Chin. Phys. Lett. 28, 090501 (2011)CrossRefGoogle Scholar
  30. 30.
    Ge, H.X., Lo, S.M.: The KdV-Burgers equation in speed gradient viscous continuum model. Physica A 391, 1652–1656 (2012)CrossRefGoogle Scholar
  31. 31.
    Tang, T.Q., Caccetta, L., Wu, Y.H., Huang, H.J., Yang, X.B.: A macro model for traffic flow on road networks with varying road conditions. J. Adv. Transp. 48, 304–317 (2014)CrossRefGoogle Scholar
  32. 32.
    Tang, T.Q., Huang, H.J., Shang, H.Y.: An extended macro traffic flow model accounting for the driver’s bounded rationality and numerical tests. Physica A 468, 322–333 (2017)CrossRefGoogle Scholar
  33. 33.
    Nagatani, T.: Modified KdV equation for jamming transition in the continuum models of traffic. Physica A 261, 599–607 (1998)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Nagatani, T.: TDGL and MKdV equations for jamming transition in the lattice models of traffic. Physica A 264, 581–592 (1999)CrossRefGoogle Scholar
  35. 35.
    Nagatani, T.: Jamming transition in traffic flow on triangular lattice. Physica A 271, 200–221 (1999)CrossRefGoogle Scholar
  36. 36.
    Nagatani, T.: Jamming transition in a two-dimensional traffic flow model. Phys. Rev. E 59, 4857–4864 (1999)CrossRefGoogle Scholar
  37. 37.
    Nagatani, T.: Jamming transition of high-dimensional traffic dynamics. Physica A 272, 592–611 (1999)CrossRefGoogle Scholar
  38. 38.
    Ge, H.X., Cheng, R.J., Lo, S.M.: Time-dependent Ginzburg-Landau equation for lattice hydrodynamic model describing pedestrian flow. Chin. Phys. B 22, 104–108 (2013)Google Scholar
  39. 39.
    Ge, H.X., Cheng, R.J., Lo, S.M.: A lattice model for bidirectional pedestrian flow on gradient road. Commun. Theor. Phys. 62, 259–264 (2014)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Redhu, P., Gupta, A.K.: Phase transition in a two-dimensional triangular flow with consideration of optimal current difference effect. Nonlinear Dyn. 78, 957–968 (2014)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Gupta, A.K., Redhu, P.: Analyses of the driver’s anticipation effect in a new lattice hydrodynamic traffic flow model with passing. Nonlinear Dyn. 76, 1001–1011 (2014)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Redhu, P., Gupta, A.K.: Jamming transitions and the effect of interruption probability in a lattice traffic flow model with passing. Physica A 421, 249–260 (2014)CrossRefGoogle Scholar
  43. 43.
    Gupta, A.K., Redhu, P.: Jamming transition of a two-dimensional traffic dynamics with consideration of optimal current difference. Phys. Lett. A 377, 2027–2033 (2013)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Redhu, P., Gupta, A.K.: Effect of forward looking sites on a multi-phase lattice hydrodynamic model. J. Phys. A 445, 150–160 (2016)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Zhang, G., Sun, D.H., Liu, H., Chen, D.: Stability analysis of a new lattice hydrodynamic model by considering lattice’s self-anticipative density effect. Physica A 486, 806–813 (2017)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Ge, H.X., Cheng, R.J.: The backward looking effect in the lattice hydrodynamic model. Physica A 387, 6952–6958 (2008)CrossRefGoogle Scholar
  47. 47.
    Ge, H.X., Cui, Y., Zhu, K.Q., Cheng, R.J.: The control method for the lattice hydrodynamic model. Commun. Nonlinear Sci. Numer. Simul. 22, 903–908 (2015)CrossRefGoogle Scholar
  48. 48.
    Tian, C., Sun, D.H., Zhang, M.: Nonlinear analysis of lattice model with consideration of optimal current difference. Commun. Nonlinear Sci. Numer. Simul. 16, 4524–4529 (2011)CrossRefGoogle Scholar
  49. 49.
    Tian, J.F., Jia, B., Li, X.G.: Flow difference effect in the lattice hydrodynamic model. Chin. Phys. B 19, 040303 (2010)CrossRefGoogle Scholar
  50. 50.
    Wang, T., Gao, Z.Y., Zhao, X.M.: Multiple flux difference effect in the lattice hydrodynamic model. Chin. Phys. B 21, 020512 (2012)CrossRefGoogle Scholar
  51. 51.
    Nagatani, T.: Jamming transitions and the modified Korteweg–de Vries equation in a two-lane traffic flow. Physica A 265, 297–310 (1999)CrossRefGoogle Scholar
  52. 52.
    Tang, T.Q., Huang, H.J., Xue, Y.: An improved two-lane traffic flow lattice model. Acta Physica Sin. 55, 4026–4031 (2006)Google Scholar
  53. 53.
    Li, Z.P., Zhang, R., Xu, S.Z., Qian, Y.Q.: Study on the effects of driver’s lane-changing aggressiveness on traffic stability from an extended two-lane lattice model. Commun. Nonlinear Sci. Numer. Simul. 24, 52–63 (2015)MathSciNetCrossRefGoogle Scholar
  54. 54.
    Zhang, G., Sun, D.H., Liu, W.N.: Analysis of a new two-lane lattice hydrodynamic model with consideration of the global average flux. Nonlinear Dyn. 81, 1623–1633 (2015)MathSciNetCrossRefGoogle Scholar
  55. 55.
    Zhang, G., Sun, D.H., Liu, W.N., Zhao, M., Cheng, S.L.: Analysis of two-lane lattice hydrodynamic model with consideration of drivers’ characteristics. Physica A 422, 16–24 (2015)CrossRefGoogle Scholar
  56. 56.
    Zhang, G., Sun, D.H., Zhao, M., Liu, W.N., Cheng, S.L.: Analysis of average density difference effect in a new two-lane lattice model. Int. J. Modern Phys. C 26, 1550062 (2015)MathSciNetCrossRefGoogle Scholar
  57. 57.
    Gupta, A.K., Redhu, P.: Analyses of drivers anticipation effect in sensing relative flux in a new lattice model for two-lane traffic system. Physica A 392, 5622–5632 (2013)CrossRefGoogle Scholar
  58. 58.
    Sharma, S.: Lattice hydrodynamic modeling of two-lane traffic flow with timid and aggressive driving behavior. Physica A 421, 401–411 (2015)CrossRefGoogle Scholar
  59. 59.
    Sharma, S.: Effect of driver’s anticipation in a new two-lane lattice model with the consideration of optimal current difference. Nonlinear Dyn. 81, 991–1003 (2015)CrossRefGoogle Scholar
  60. 60.
    Tian, J.F., Yuan, Z.Z., Jia, B., Li, M.H., Jiang, G.J.: The stabilization effect of the density difference in the modified lattice hydrodynamic model of traffic flow. Physica A 391, 4476–4482 (2012)CrossRefGoogle Scholar
  61. 61.
    Wang, T., Gao, Z.Y., Zhang, J.: Stabilization effect of multiple density difference in the lattice hydrodynamic model. Nonlinear Dyn. 73, 2197–2205 (2013)CrossRefGoogle Scholar
  62. 62.
    Wang, T., Gao, Z.Y., Zhang, J., Zhao, X.: A new lattice hydrodynamic model for two-lane traffic with the consideration of density difference effect. Nonlinear Dyn. 75, 27–34 (2014)MathSciNetCrossRefGoogle Scholar
  63. 63.
    Gupta, A.K., Redhu, P.: Analysis of a modified two-lane lattice model by considering the density difference effect. Commun. Nonlinear Sci. Numer. Simul. 19, 1600–1610 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.College of Physics and ElectronicsHunan University of Arts and ScienceChangdeChina
  2. 2.College of Physical Science and TechnologyGuangxi Normal UniversityGuilinChina
  3. 3.School of Computer Science and Communication EngineeringGuangxi University of Science and TechnologyLiuzhouChina

Personalised recommendations