Nonlinear Dynamics

, Volume 94, Issue 4, pp 2901–2918 | Cite as

Bifurcation analysis of a diffusive predator–prey system with nonmonotonic functional response

  • Bounsanong Sounvoravong
  • Jianping Gao
  • Shangjiang GuoEmail author
Original Paper


In this paper, a diffusive predator–prey model with nonmonotonic functional response is investigated. The stability of the positive spatially homogeneous steady states and bifurcations of spatially homogeneous/nonhomogeneous time-periodic solutions as well as steady-state solutions are studied. In particular, the formulas determining the direction and the stability of the bifurcating periodic solutions are obtained. These results provide theoretical evidences to the complex spatiotemporal dynamics found by numerical simulations.


Diffusion Kinetic system Hopf bifurcation Steady-state bifurcation 

Mathematics Subject Classification

35J20 35J60 


  1. 1.
    Chen, S., Jianshe, Y.: Dynamics of a diffusive predator–prey system with a nonlinear growth rate for the predator. J. Differ. Equ. 260(11), 7923–7939 (2016)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Du, Y., Shi, J.: A diffusive predator-prey model with a protection zone. J. Differ. Equ. 229(1), 63–91 (2006)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Faria, T.: Stability and bifurcation for a delayed predator–prey model and the effect of diffusion. J. Math. Anal. Appl. 254(2), 433–463 (2001)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Guo, S.: Patterns in a nonlocal time-delayed reaction–diffusion equation. Zeitschrift für angewandte Mathematik und Physik 69(10), 1–31 (2018)MathSciNetGoogle Scholar
  5. 5.
    Guo, S.: Generalized Hopf bifurcation for neutral functional differential equations. Int. J. Bifurc. Chaos 26(14), 1650231 (2016)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Guo, S.: Stability and bifurcation in a reaction–diffusion model with nonlocal delay effect. J. Differ. Equ. 259(4), 1409–1448 (2015)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Guo, S., Man, J.: Patterns in hierarchical networks of neuronal oscillators with \(\mathbb{D}_3\times \mathbb{Z}_3\) symmetry. J. Differ. Equ. 254(8), 3501–3529 (2013)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Guo, S., Wu, J.: Bifurcation Theory of Functional Differential Equations, vol. 184. Springer, New York (2013)zbMATHGoogle Scholar
  9. 9.
    Guo, S., Yan, S.: Hopf bifurcation in a diffusive Lotka–Volterra type system with nonlocal delay effect. J. Differ. Equ. 260(1), 781–817 (2016)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Guo, S., Yuan, Y.: Pattern formation in a ring network with delay. Math. Models Methods Appl. Sci. 19(10), 1797–1852 (2009)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics. Springer, Berlin (1993)Google Scholar
  12. 12.
    Holling, C.S.: Some characteristics of simple types of predation and parasitism. Can. Entomol. 91(1), 385–398 (1959)Google Scholar
  13. 13.
    Kazarinoff, N.D., Van Den Driessche, P.: A model predator–prey system with functional response. Math. Biosci. 39(1), 125–134 (1978)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Kuto, K., Tsujikawa, T.: Limiting structure of steady-states to the lotka–Lvolterra competition model with large diffusion and advection. J. Differ. Equ. 258(5), 1801–1858 (2015)zbMATHGoogle Scholar
  15. 15.
    Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. Applied Mathematical Sciences, vol. 112, 2nd edn. Springer, Berlin (1998)zbMATHGoogle Scholar
  16. 16.
    Lotka, A.J.: Elements of Physical Biology. Williams & Wilkins Company, Philadelphia (1925)zbMATHGoogle Scholar
  17. 17.
    Ma, L., Guo, S.: Stability and bifurcation in a diffusive Lotka–Volterra system with delay. Comput. Math. Appl. 72(1), 147–177 (2016)MathSciNetGoogle Scholar
  18. 18.
    Medvinsky, A.B., Petrovskii, S.V., Tikhonova, I.A., Malchow, H., Li, B.-L.: Spatiotemporal complexity of plankton and fish dynamics. SIAM Rev. 44(3), 311–370 (2002)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Murray, J.D.: Mathematical Biology: I. An Introduction. Interdisciplinary Applied Mathematics. Springer, New York (2011)Google Scholar
  20. 20.
    Owen, M.R., Lewis, M.A.: How predation can slow, stop or reverse a prey invasion. Bull. Math. Biol. 63(4), 655 (2001)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Peng, R., Shi, J.: Non-existence of non-constant positive steady states of two holling type-II predator–prey systems: strong interaction case. J. Differ. Equ. 247(3), 866–886 (2009)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Rabinowitz, P.H.: Some global results for nonlinear eigenvalue problems. J. Funct. Anal. 7(3), 487–513 (1971)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Seo, G., Kot, M.: A comparison of two predator–prey models with Hollings type I functional response. Math. Biosci. 212(2), 161–179 (2008)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Sokol, W., Howell, J.A.: Kinetics of phenol oxidation by washed cells. Biotechnol. Bioeng. 23(9), 2039–2049 (1981)Google Scholar
  25. 25.
    Turing, A.M.: The chemical basis of morphogenesis. Bull. Math. Biol. 52(1), 153–197 (1990)Google Scholar
  26. 26.
    Wang, J.F., Wang, Y.W.: Bifurcation analysis in a diffusive Segel–Jackson model. J. Math. Anal. Appl. 415(1), 204–216 (2014)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Wang, J.: Spatiotemporal patterns of a homogeneous diffusive predator–prey system with holling type III functional response. J. Dyn. Differ. Equ. 29(4), 1383–1409 (2017)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Wang, J., Wei, J., Shi, J.: Global bifurcation analysis and pattern formation in homogeneous diffusive predator–prey systems. J. Differ. Equ. 260(4), 3495–3523 (2016)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Wu, J.: Theory and Applications of Partial Functional Differential Equations, vol. 119. Springer, Berlin (1996)zbMATHGoogle Scholar
  30. 30.
    Xiao, D., Ruan, S.: Global analysis in a predator–prey system with nonmonotonic functional response. SIAM J. Appl. Math. 61(4), 1445–1472 (2001)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Xiao, D., Zhu, H.: Multiple focus and hopf bifurcations in a predator–prey system with nonmonotonic functional response. SIAM J. Appl. Math. 66(3), 802–819 (2006)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Yan, S., Guo, S.: Bifurcation phenomena in a Lotka–Volterra model with cross-diffusion and delay effect. Int. J. Bifurc. Chaos 27(7), 1750105 (2017)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Yan, S., Guo, S.: Stability analysis of a stage structure model with spatiotemporal delay effect. Comput. Math. Appl. 73(2), 310–326 (2017)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Yan, X., Li, W.: Stability of bifurcating periodic solutions in a delayed reaction–diffusion population model. Nonlinearity 23(6), 1414–1431 (2010)MathSciNetGoogle Scholar
  35. 35.
    Yi, F., Wei, J., Shi, J.: Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator–prey system. J. Differ. Equ. 246(5), 1944–1977 (2009)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Zhang, L., Guo, S.: Hopf bifurcation in delayed van der Pol oscillators. Nonlinear Dyn. 71(3), 555–568 (2013)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Zou, R., Guo, S.: Dynamics in a diffusive predator–prey system with ratio-dependent predator influence. Comput. Math. Appl. 75, 1237–1258 (2018)MathSciNetGoogle Scholar
  38. 38.
    Zou, R., Guo, S.: Bifurcation of reaction cross-diffusion systems. Int. J. Bifurc. Chaos 27(4), 1750049 (2017)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Bounsanong Sounvoravong
    • 1
  • Jianping Gao
    • 1
  • Shangjiang Guo
    • 1
    Email author
  1. 1.College of Mathematics and EconometricsHunan UniversityChangshaPeople’s Republic of China

Personalised recommendations