Advertisement

Nonlinear Dynamics

, Volume 94, Issue 4, pp 2889–2899 | Cite as

Fixed-time stabilization of high-order integrator systems with mismatched disturbances

  • Bailing Tian
  • Hanchen Lu
  • Zongyu Zuo
  • Hong Wang
Original Paper
  • 169 Downloads

Abstract

The fixed-time stabilization of high-order integrator systems with both matched and mismatched disturbances is investigated. A continuous non-switching control law is designed based on the bi-limit homogeneous technique for arbitrary-order integrator systems. Combining with fixed-time disturbance observer, the proposed continuous control law for the system with matched and mismatched disturbances guarantees that the convergence time is uniformly bounded with respect to any initial states. Finally, the numerical results are provided to verify the efficiency of the developed method.

Keywords

Fixed-time stability Disturbance observer Mismatched disturbances 

Notes

Acknowledgements

The work was done when the authors were with the University of Manchester, UK, and it was supported in part by the National Natural Science Foundation of China (Grant Nos. 61673034, 61673294 and 61773278) and in part by the Ministry of Education Equipment Development Fund under Grant Nos. 6141A02033311 and 6141A02022328.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Du, H., Li, S., Qian, C.: Finite-time attitude tracking control of spacecraft with application to attitude synchronization. IEEE Trans. Autom. Control 56(11), 2711–2717 (2011)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Liu, X., Ho, D.W.C., Cao, J., Yu, W.: Discontinuous observers design for finite-time consensus of multiagent systems with external disturbances. IEEE Trans. Neural Netw. Learn. Syst. 28(11), 2826–2830 (2017)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Liu, X., Cao, J., Yu, W., Song, Q.: Nonsmooth finite-time synchronization of switched coupled neural networks. IEEE Trans. Cybern. 46(10), 2360–2371 (2016)CrossRefGoogle Scholar
  4. 4.
    Tian, B.L., Fan, W.R., Su, R., Zong, Q.: Real-time trajectory and attitude coordination control for reusable launch vehicle in reentry phase. IEEE Trans. Ind. Electron. 62(3), 1639–1650 (2015)CrossRefGoogle Scholar
  5. 5.
    Du, H.B., Wen, G.H., Yu, X.H., Li, S.H., Chen, M.Z.Q.: Finite-time consensus of multiple nonholonomic chained-form systems based on recursive distributed observer. Automatica 62(12), 236–242 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Tian, B.L., Lu, H.C., Zuo, Z.Y., Zong, Q.: Multivariable finite-time output feedback trajectory tracking control of quadrotor helicopters. Int. J. Robust Nonlinear Control 28(1), 281–295 (2018)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Levant, A.: Homogeneity approach to high-order sliding mode design. Automatica 41(5), 923–830 (2005)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Estrada, A., Fridman, L.: Quasi-continuous hosm control for systems with unmatched perturbations. Automatica 46(11), 1916–1919 (2010)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bhat, S.P., Bernstein, D.S.: Lyapunov analysis of finite-time differential equations. In: American Control Conference, pp. 1831–1832. Seattle, WA (1995)Google Scholar
  10. 10.
    Polyakov, A., Poznyak, A.: Lyapunov function design for finite-time convergence analysis: twisting controller for second-order sliding mode realization. Automatica 45(2), 444–448 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Yang, J., Li, S.H., Su, J.Y., Yu, X.H.: Continuous nonsingular terminal sliding mode control for systems with mismatched disturbances. Automatica 49(7), 2287–2291 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Andrieu, V., Praly, L., Astolfi, A.: Homogeneous approximation, recursive observer design and output feedback. SIAM J. Control Optim. 47(4), 1814–1850 (2008)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Zuo, Z.: Non-singular fixed-time consensus tracking for second-order multi-agent networks. Automatica 54(4), 305–309 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Meng, D., Zuo, Z.: Signed-average consensus for networks of agents: a nonlinear fixed-time convergence protocol. Nonlinear Dyn. 85(1), 155–165 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Ni, J., Liu, C., Liu, X., Shen, T.: Fixed-time dynamic surface high-order sliding mode control for chaotic oscillation in power system. Nonlinear Dyn. 86(1), 401–420 (2016)CrossRefGoogle Scholar
  16. 16.
    Huang, Y., Jia, Y.: Fixed-time consensus tracking control of second-order multi-agent systems with inherent nonlinear dynamics via output feedback. Nonlinear Dyn. 91(2), 1289–1306 (2018)CrossRefGoogle Scholar
  17. 17.
    Yu, X., Li, P., Zhang, Y.: The design of fixed-time observer and finite-time fault-tolerant control for hypersonic gliding vehicles. IEEE Trans. Ind. Electron. 65(5), 4135–4344 (2018)CrossRefGoogle Scholar
  18. 18.
    Polyakov, A.: Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Autom. Control 57(8), 2106–2110 (2012)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Tian, B.L., Zuo, Z.Y., Yan, X.M., Wang, H.: A fixed-time output feedback control scheme for double integrator systems. Automatica 80, 17–24 (2017)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Tian, B.L., Lu, H.C., Zuo, Z.Y., Yang, W.: Fixed-time leader-follower output feedback consensus for second-order multi-agent systems. In: IEEE Transactions on Cybernetics,  https://doi.org/10.1109/TCYB.2018.2794759 (2018)
  21. 21.
    Polyakov, A., Efimov, D., Perruquetti, W.: Finite-time and fixed-time stabilization: Implicit lyapunov function approach. Automatica 51(2), 332–340 (2015)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Laghrouche, S., Harmouche, M., Chitour, Y.: Stabilization of perturbed integrator chains using lyapunov-based homogeneous controllers. arXiv:1303.5330 [math.OC] (2013)
  23. 23.
    Bhat, S.P., Bernstein, D.S.: Geometric homogeneity with applications to finite-time stability. Math. Control Signals Syst. 17(2), 101–127 (2005)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Defoort, M., Floquet, T., Kokosy, A., Perruqetti, W.: A novel higher order sliding mode control scheme. Syst. Control Lett. 58(2), 102–108 (2009)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Tian, B.L., Liu, L.H., Lu, H.C.: Multivariable finite time attitude control for quadrotor UAV: theory and experimentation. IEEE Trans. Ind. Electron. 65(3), 2567–2577 (2018)CrossRefGoogle Scholar
  26. 26.
    Yao, X.M., Guo, L.: Composite anti-disturbance control for Markovian jump nonlinear systems via disturbance observer. Automatica 49(8), 2538–2545 (2013)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Yao, X.M., Guo, L., Wu, L.G., Dong, H.R.: Static anti-windup design for nonlinear Markovian jump systems with multiple disturbances. Inf. Sci. 418–419, 169–183 (2017)CrossRefGoogle Scholar
  28. 28.
    Tian, B.L., Yin, L.P., Wang, H.: Finite-time reentry attitude control based on adaptive multivariable disturbance compensation. IEEE Trans. Ind. Electron. 62(9), 5889–5898 (2015)CrossRefGoogle Scholar
  29. 29.
    Rosier, L.: Homogeneous Lyapunov function for homogeneous continuous vector field. Syst. Control Lett. 19(6), 463–473 (1992)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Bernuau, E., Efimov, D., Perruquetti, W., Polyakov, A.: On homogeneity and its application in sliding mode control. J. Frankl. Inst. 351(4), 1866–1901 (2014)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Munkres, J.R.: Topology a First Course. Prentice-Hall, Englewood Cliffs (1975)zbMATHGoogle Scholar
  32. 32.
    Shtessel, Y.B., Shkolnikov, I.A., Levant, A.: Smooth second-order sliding mode: missile guidance application. Automatica 43(8), 1470–1476 (2007)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Angulo, M.T., Moreno, J.A., Fridman, L.: Robust exact uniformly convergent arbitrary order differentiator. Automatica 49(8), 2489–2495 (2013)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Filippov, A.F.: Differential Equations with Discontinuous Right Hand Sides. Kluwer Academic Publishers, The Netherlands (1975)Google Scholar
  35. 35.
    Levant, A.: Higher-order sliding modes, differentiation and output-feedback control. Int. J. Control 76(9/10), 924–941 (2003)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Hurwitz, A.: On the conditions under which an equation has only roots with negative real parts. Mathematische Annelen 46, 273–284 (1985)CrossRefGoogle Scholar
  37. 37.
    Nie, Y.Y., Xie, X.K.: New criteria for polynomial stability. IMA J. Math. Control Inf. 4(1), 1–12 (1987)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Xie, X.K.: A new method to study the stability of linear systems (chinese). In: Proceedings of the First National Conference on Mechanics, Beijing, China, (1957)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.School of Electrical and Information EngineeringTianjin UniversityTianjinChina
  2. 2.School of Automation Science and Electrical EngineeringBeihang University (BUAA)BeijingChina
  3. 3.School of Electrical and Electronic EngineeringThe University of ManchesterManchesterUK

Personalised recommendations