Advertisement

Nonlinear Dynamics

, Volume 94, Issue 4, pp 2715–2725 | Cite as

An equilibrium-based learning approach with application to robotic fish

  • Xuefang Li
  • Qinyuan Ren
  • Jian-Xin Xu
Original Paper

Abstract

In this work, we extend the concept of integral control to equilibrium-based learning control. As far as the plant reaches an equilibrium that deviates from the reference, a learning mechanism will update the control action. The new control action will drive the plant output to reach a new equilibrium that is closer the reference set-point. By applying fixed point theorem, we can prove the convergence of the controlled equilibrium to the reference set-point exponentially, where the plant dynamics can be generically nonlinear and non-affine. The only prior information required is a non-singular input–output gradient of the stabilized plant. As a real-time application, the proposed control method is applied to motion control of a tail-actuated robotic fish. To facilitate the controller design, the dynamical model of the robotic fish is established based on Newton’s second law and Lighthill’s small amplitude model. In the end, both simulations and experiments are conducted to illustrate the effectiveness of the proposed learning approach.

Keywords

Learning control Robotic fish Motion control Turning control Self-adaption 

Notes

Funding

Open Research Project of the State Key Laboratory of Industrial Control Technology, Zhejiang University, China (Grant No. ICT170345).

References

  1. 1.
    Bristow, D.A., Tharayil, M., Alleyne, A.G.: A survey of iterative learning control. IEEE Control Syst. Mag. 26, 96–114 (2006)CrossRefGoogle Scholar
  2. 2.
    Chen, Y.Q., Moore, K.L., Yu, J., Zhang, T.: Iterative learning control and repetitive control in hard disk drive industry-a tutorial. Int. J. Adapt. Control Signal Process. 22, 325–343 (2008)CrossRefGoogle Scholar
  3. 3.
    Li, X., Xu, J.-X., Huang, D.: An iterative learning control approach for linear time-invariant systems with randomly varying trial lengths. IEEE Trans. Automat. Control 59(7), 1954–1960 (2014)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Yu, M., Zhou, W., Liu, B.: On iterative learning control for MIMO nonlinear systems in the presence of time-iteration-varying parameters. Nonlinear Dyn. 89, 2561–2571 (2017).  https://doi.org/10.1007/s11071-017-3604-0 MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Kim, M., Kuc, T.Y., Kim, H., Wi, S., Lee, J.S.: An adaptive learning controller for MIMO uncertain feedback linearizable nonlinear systems. Nonlinear Dyn. 80(1–2), 999–1016 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Xu, J.-X., Tan, Y.: Linear and nonlinear iterative learning control. In: Series of Lecture Notes in Control and Information Sciences. Springer, Berlin (2003)Google Scholar
  7. 7.
    Wang, Y., Gao, F., Doyle, F.J.: Survey on iterative learning control, repetitive control, and run-to-run control. J. Process Control 19, 1589–1600 (2009)CrossRefGoogle Scholar
  8. 8.
    Quan, Q., Cai, K.: A survey of repetitive control for nonlinear systems. Sci. Found. China 18, 45–59 (2010)CrossRefGoogle Scholar
  9. 9.
    McIsaac, K.A., Ostrowski, J.P.: Motion planning for anguilliform locomotion. IEEE Trans. Robot. Autom. 19, 637–652 (2003)CrossRefGoogle Scholar
  10. 10.
    Elmokadem, T., Zribi, M., Youcef-Toumi, K.: Trajectory tracking sliding mode control of underactuated AUVs. Nonlinear Dyn. 84(2), 1079–1091 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Joe, H., Kim, M., Yu, S.C.: Second-order sliding-mode controller for autonomous underwater vehicle in the presence of unknown disturbances. Nonlinear Dyn. 78(1), 183–196 (2014)CrossRefGoogle Scholar
  12. 12.
    Ghavidel, H.F., Kalat, A.A.: Robust control for MIMO hybrid dynamical system of underwater vehicles by composite adaptive fuzzy estimation of uncertainties. Nonlinear Dyn. 89, 2347–2365 (2017).  https://doi.org/10.1007/s11071-017-3590-2 MathSciNetCrossRefGoogle Scholar
  13. 13.
    Wen, L., Wang, T., Wu, G.: Novel method for the modeling and control investigation of efficient swimming for robotic fish. IEEE Trans. Ind. Electron. 59(8), 3176–3188 (2012)CrossRefGoogle Scholar
  14. 14.
    Kato, N.: Control performance in the horizontal plane of a fish robot with mechanical pectoral fins. IEEE J. Ocean. Eng. 25(1), 121–129 (2000)CrossRefGoogle Scholar
  15. 15.
    Yu, J., Tan, M., Wang, S., Chen, E.: Development of a biomimetic robotic fish and its control algorithm. IEEE Trans. Syst. Man Cybern. 34(4), 1798–1810 (2004)CrossRefGoogle Scholar
  16. 16.
    Ren, Q., Xu, J.-X., Li, X.: A data-driven motion control approach for a robotic fish. J. Bionic Eng. 12, 382–394 (2015)CrossRefGoogle Scholar
  17. 17.
    Li, X., Ren, Q., Xu, J.-X.: Precise speed tracking control of a robotic fish via iterative learning control. IEEE Trans. Ind. Electron. 63(4), 2221–2228 (2016)CrossRefGoogle Scholar
  18. 18.
    Mcmasters, R.L., Grey, C.P., Sollock, J.M.: Comparing the mathematical models of lighthill to the performance of a biomimetic fish. Bioinspir. Biomim. 3(1), 247–269 (2008)CrossRefGoogle Scholar
  19. 19.
    Lighthill, M.J.: Note on the swimming of slender fish. J. Fluid Mech. 9(1), 305–317 (1960)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Colgate, J.E., Lynch, K.M.: Mechanics and control of swimming: a review. IEEE J. Ocean. Eng. 29(3), 660–673 (2004)CrossRefGoogle Scholar
  21. 21.
    Wang, J., Tan, X.: A dynamic model for tail-actuated robotic fish with drag coefficient adaptation. Mechatronics 23(6), 659–668 (2013)CrossRefGoogle Scholar
  22. 22.
    Aureli, M., Kopman, V., Porfiri, M.: Free-locomotion of underwater vehicles actuated by ionic polymer metal composites. IEEE/ASME Trans. Mechatron. 15(4), 603–614 (2010)CrossRefGoogle Scholar
  23. 23.
    Morgansen, K.A., Triplett, B.I., Klein, D.J.: Geometric methods for modeling and control of free-swimming fin-actuated underwater vehicles. IEEE Trans. Robot. 23(6), 1184–1199 (2007)CrossRefGoogle Scholar
  24. 24.
    Salomon, R.: Evolutionary algorithms and gradient search: similarities and differences. IEEE Trans. Evol. Comput. 2(2), 45–55 (1998)CrossRefGoogle Scholar
  25. 25.
    Xu, J.-X., Huang, D.: Iterative learning in ballistic control: formulation of spatial learning processes for endpoint control. ASME J. Dyn. Syst. Meas. Control 135, 024501–11 (2013)CrossRefGoogle Scholar
  26. 26.
    Verma, S., Xu, J.-X.: Data assisted modelling and speed control of a robotic fish. IEEE Trans. Ind. Electron. 64, 4150–4157 (2016).  https://doi.org/10.1109/TIE.2016.2613500 CrossRefGoogle Scholar
  27. 27.
    Yu, J., Liu, L., Wang, L., Tan, M., Xu, D.: Turning control of a multilink biomimetic robotic fish. IEEE Trans. Robot. 24(1), 201–206 (2008)CrossRefGoogle Scholar
  28. 28.
    Ren, Q., Xu, J.-X., Guo,, Z., Ru, Y.: Motion control of a multi-joint robotic fish based on biomimetic learning. In: IEEE 23rd International Symposium on Industrial Electronics (ISIE), pp. 1566–1571 (2014)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Electrical and Electronic EngineeringImperial College LondonLondonUK
  2. 2.College of Control Science and EngineeringZhejiang UniversityHangzhouChina
  3. 3.Department of Electrical and Computer EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations