Advertisement

Nonlinear Dynamics

, Volume 94, Issue 4, pp 2697–2713 | Cite as

Design of delayed fractional state variable filter for parameter estimation of fractional nonlinear models

  • Walid Allafi
  • Ivan Zajic
  • Kotub Uddin
  • Zhonghua Shen
  • James Marco
  • Keith Burnham
Original Paper
  • 74 Downloads

Abstract

This paper presents a novel direct parameter estimation method for continuous-time fractional nonlinear models. This is achieved by adapting a filter-based approach that uses the delayed fractional state variable filter for estimating the nonlinear model parameters directly from the measured sampled input–output data. A class of fractional nonlinear ordinary differential equation models is considered, where the nonlinear terms are linear with respect to the parameters. The nonlinear model equations are reformulated such that it allows a linear estimator to be used for estimating the model parameters. The required fractional time derivatives of measured input–output data are computed by a proposed delayed fractional state variable filter. The filter comprises of a cascade of all-pass filters and a fractional Butterworth filter, which forms the core part of the proposed parameter estimation method. The presented approaches for designing the fractional Butterworth filter are the so-called, square root base and compartmental fractional Butterworth design. According to the results, the parameters of the fractional-order nonlinear ordinary differential model converge to the true values and the estimator performs efficiently for the output error noise structure.

Keywords

Delayed fractional state variable filter Fractional Butterworth filter Fractional nonlinear system Parameter estimation Delay equalisation Square root base Compartmental 

Notes

Compliance with ethical standards

Conflicts of interest

All authors declare that they have no conflict of interest.

References

  1. 1.
    Acharya, A., Das, S., Pan, I., Das, S.: Extending the concept of analog butterworth filter for fractional order systems. Signal Process. 94, 409–420 (2014)CrossRefGoogle Scholar
  2. 2.
    Allafi, W., Burnham, K.J.: Identification of fractional-order continuous-time hybrid box-jenkins models using refined instrumental variable continuous-time fractional-order method. In: Advances in Systems Science—Proceedings of the International Conference on Systems Science, pp. 785–794 (2013)Google Scholar
  3. 3.
    Allafi, W., Uddin, K., Zhang, C., Sha, R.M.R.A., Marco, J.: On-line scheme for parameter estimation of nonlinear lithium ion battery equivalent circuit models using the simplified refined instrumental variable method for a modified wiener continuous-time model. Appl. Energy 204, 497–508 (2017).  https://doi.org/10.1016/j.apenergy.2017.07.030 CrossRefGoogle Scholar
  4. 4.
    Allafi, W., Zajic, I., Burnham, K.J.: Identification of Fractional Order Models: Application to 1D Solid Diffusion System Model of Lithium Ion Cell, pp. 63–68. Springer, Cham (2015)Google Scholar
  5. 5.
    Anderson, S.R., Kadirkamanathan, V.: Modelling and identification of non-linear deterministic systems in the delta-domain. Automatica 43(11), 1859–1868 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Aslam, M.S., Chaudhary, N.I., Raja, M.A.Z.: A sliding-window approximation-based fractional adaptive strategy for hammerstein nonlinear armax systems. Nonlinear Dyn. 87(1), 519–533 (2017).  https://doi.org/10.1007/s11071-016-3058-9 CrossRefzbMATHGoogle Scholar
  7. 7.
    Azar, A., Vaidyanathan, S., Ouannas, A.: Fractional order control and synchronization of chaotic systems, vol. 688. Springer, Berlin (2017)CrossRefGoogle Scholar
  8. 8.
    Blinchikoff, H.J.: Filtering in the Time and Frequency Domains. Electromagnetic Waves. Institution of Engineering and Technology, Stevenage (2001)CrossRefGoogle Scholar
  9. 9.
    Buller, S., Thele, M., Karden, E., Doncker, R.W.D.: Impedance-based non-linear dynamic battery modeling for automotive applications. J. Power Sources 113(2), 422–430 (2003).  https://doi.org/10.1016/S0378-7753(02)00558-X. Proceedings of the International Conference on Lead-Acid Batteries, LABAT ’02CrossRefGoogle Scholar
  10. 10.
    Butterworth, S.: On the theory of filter amplifiers. Wirel. Eng. 7(6), 536–541 (1930)Google Scholar
  11. 11.
    Cahoy, D.O., Uchaikin, V.V., Woyczynski, W.A.: Parameter estimation for fractional poisson processes. J. Stat. Plan. Inference 140(11), 3106–3120 (2010).  https://doi.org/10.1016/j.jspi.2010.04.016 MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Chen, D., Chen, Y., Xue, D.: Digital fractional order Savitzky–Golay differentiator. IEEE Trans. Circuits Syst. II Express Briefs 58(11), 758–762 (2011).  https://doi.org/10.1109/TCSII.2011.2168022 CrossRefGoogle Scholar
  13. 13.
    Chen, Y., Wei, Y., Zhou, X., Wang, Y.: Stability for nonlinear fractional order systems: an indirect approach. Nonlinear Dyn. 89(2), 1011–1018 (2017).  https://doi.org/10.1007/s11071-017-3497-y CrossRefzbMATHGoogle Scholar
  14. 14.
    Cois, O., Oustaloup, A., Poinot, T., Battaglia, J.L.: Fractional state variable filter for system identification by fractional model. In: 2001 European Control Conference (ECC), pp. 2481–2486 (2001)Google Scholar
  15. 15.
    Essa, M., Aboelela, M., Hassan, M.: Application of fractional order controllers on experimental and simulation model of hydraulic servo system. In: Ahmad Taher A, Sundarapandian V, Adel O (eds) Fractional Order Control and Synchronization of Chaotic Systems, pp. 277–324. Springer, Berlin (2017)CrossRefGoogle Scholar
  16. 16.
    Garnier, H., Wang, L., Young, P.C.: Direct Identification of Continuous-time Models from Sampled Data: Issues, Basic Solutions and Relevance, pp. 1–29. Springer, London (2008)Google Scholar
  17. 17.
    Gutiérrez, R.E., Rosário, J.M., Tenreiro Machado, J.: Fractional order calculus: basic concepts and engineering applications. Math. Probl. Eng. 2010, 1–19 (2010)CrossRefGoogle Scholar
  18. 18.
    Hartley, T.T., Lorenzo, C.F., Qammer, H.K.: Chaos in a fractional order chua’s system. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 42(8), 485–490 (1995).  https://doi.org/10.1109/81.404062 CrossRefGoogle Scholar
  19. 19.
    Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)CrossRefGoogle Scholar
  20. 20.
    Karami-Mollaee, A., Tirandaz, H., Barambones, O.: On dynamic sliding mode control of nonlinear fractional-order systems using sliding observer. Nonlinear Dyn. 92(3), 1379–1393 (2018).  https://doi.org/10.1007/s11071-018-4133-1 CrossRefzbMATHGoogle Scholar
  21. 21.
    Khadhraoui, A., Jelassi, K., Trigeassou, J.C., Melchior, P.: Identification of fractional model by least-squares method and instrumental variable. J. Comput. Nonlinear Dyn. 10(5), 050801 (2015)CrossRefGoogle Scholar
  22. 22.
    Kohr, R.H.: A method for the determination of a differential equation model for simple nonlinear systems. Electron. Comput. IEEE Trans. EC 4, 394–400 (1963)CrossRefGoogle Scholar
  23. 23.
    Leyden, K., Goodwine, B.: Fractional-order system identification for health monitoring. Nonlinear Dyn. 92(3), 1317–1334 (2018).  https://doi.org/10.1007/s11071-018-4128-y CrossRefGoogle Scholar
  24. 24.
    Li, Z., Chen, D., Zhu, J., Liu, Y.: Nonlinear dynamics of fractional order duffing system. Chaos Solitons Fractals 81(Part A), 111–116 (2015).  https://doi.org/10.1016/j.chaos.2015.09.012 MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Lin, J., Wang, Z.J.: Parameter identification for fractional-order chaotic systems using a hybrid stochastic fractal search algorithm. Nonlinear Dyn. 90(2), 1243–1255 (2017).  https://doi.org/10.1007/s11071-017-3723-7 MathSciNetCrossRefGoogle Scholar
  26. 26.
    Liu, D.Y., Gibaru, O., Perruquetti, W., Laleg-Kirati, T.M.: Fractional order differentiation by integration and error analysis in noisy environment. IEEE Trans. Autom. Control 60(11), 2945–2960 (2015).  https://doi.org/10.1109/TAC.2015.2417852 MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Liu, D.Y., Laleg-Kirati, T.M., Gibaru, O., Perruquetti, W.: Fractional order numerical differentiation with B-Spline functions. In: The International Conference on Fractional Signals and Systems 2013. Ghent, Belgium (2013)Google Scholar
  28. 28.
    Liu, D.Y., Zheng, G., Boutat, D., Liu, H.R.: Non-asymptotic fractional order differentiator for a class of fractional order linear systems. Automatica 78, 61–71 (2017).  https://doi.org/10.1016/j.automatica.2016.12.017 MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Liu, F., Li, X., Liu, X., Tang, Y.: Parameter identification of fractional-order chaotic system with time delay via multi-selection differential evolution. Syst. Sci. Control Eng. 5(1), 42–48 (2017)CrossRefGoogle Scholar
  30. 30.
    Maachou, A., Malti, R., Melchior, P., Battaglia, J.L., Hay, B.: Thermal system identification using fractional models for high temperature levels around different operating points. Nonlinear Dyn. 70(2), 941–950 (2012).  https://doi.org/10.1007/s11071-012-0507-y MathSciNetCrossRefGoogle Scholar
  31. 31.
    Maachou, A., Malti, R., Melchior, P., Battaglia, J.L., Oustaloup, A., Hay, B.: Nonlinear thermal system identification using fractional volterra series. Control Eng. Practice 29, 50–60 (2014)CrossRefGoogle Scholar
  32. 32.
    Malti, R., Sabatier, J., Akay, H.: Thermal modeling and identification of an aluminum rod using fractional calculus. IFAC Proc. Vol. 42(10), 958–963 (2009).  https://doi.org/10.3182/20090706-3-FR-2004.00159. 15th IFAC Symposium on System IdentificationCrossRefGoogle Scholar
  33. 33.
    Mani, A.K., Narayanan, M.D., Sen, M.: Parametric identification of fractional-order nonlinear systems. Nonlinear Dyn. (2018).  https://doi.org/10.1007/s11071-018-4238-6 CrossRefzbMATHGoogle Scholar
  34. 34.
    Monje, C.A., Chen, Y., Vinagre, B.M., Xue, D., Feliu-Batlle, V.: Fractional-order Systems and Controls: Fundamentals and Applications. Springer, Berlin (2010)CrossRefGoogle Scholar
  35. 35.
    Nise, N.: Control systems engineering, 6th edn. Wiley, Hoboken (2011)zbMATHGoogle Scholar
  36. 36.
    Petras, I.: Fractional-order Nonlinear Systems: Modeling, Analysis and Simulation. Springer, Berlin (2011)CrossRefGoogle Scholar
  37. 37.
    Raja, M., Chaudhary, N.: Adaptive strategies for parameter estimation of Box–Jenkins systems. IET Signal Process. 8(12), 968–980 (2014)CrossRefGoogle Scholar
  38. 38.
    Sheng, H., Chen, Y., Qiu, T.: Fractional Processes and Fractional-order Signal Processing: Techniques and Applications. Springer, Berlin (2012)CrossRefGoogle Scholar
  39. 39.
    Sierociuk, D., Dzielinski, A.: Fractional Kalman filter algorithm for the states, parameters and order of fractional system estimation. Int. J. Appl. Math. Comput. Sci. 16(1), 129 (2006)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Simpkins, A.: System identification: Theory for the user, 2nd edition (ljung, l.; 1999) [on the shelf]. IEEE Robotics Automation Magazine 19(2), 95–96 (2012).  https://doi.org/10.1109/MRA.2012.2192817 CrossRefGoogle Scholar
  41. 41.
    Soltan, A., Radwan, A., Soliman, A.M.: Butterworth passive filter in the fractional-order. In: International Conference on Microelectronics, pp. 1–5. IEEE (2011)Google Scholar
  42. 42.
    Soltan, A., Radwan, A., Soliman, A.M.: Fractional order filter with two fractional elements of dependant orders. Microelectron. J. 43(11), 818–827 (2012)CrossRefGoogle Scholar
  43. 43.
    Tang, Y., Zhang, X., Hua, C., Li, L., Yang, Y.: Parameter identification of commensurate fractional-order chaotic system via differential evolution. Phys. Lett. A 376(4), 457–464 (2012)CrossRefGoogle Scholar
  44. 44.
    Tepljakov, A., Petlenkov, E., Belikov, J.: Fomcon: Fractional-order modeling and control toolbox for matlab. In: Proceedings of the 18th International Conference Mixed Design of Integrated Circuits and Systems—MIXDES 2011, pp. 684–689 (2011)Google Scholar
  45. 45.
    Tsang, K., Billings, S.: Identification of continuous time nonlinear systems using delayed state variable filters. Int. J. Control 60(2), 159–180 (1994)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Verhulst, F.: Nonlinear differential equations and dynamical systems. Springer, Berlin (2006)zbMATHGoogle Scholar
  47. 47.
    Victor, S., Malti, R., Garnier, H., Oustaloup, A.: Parameter and differentiation order estimation in fractional models. Automatica 49(4), 926–935 (2013).  https://doi.org/10.1016/j.automatica.2013.01.026 MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Wang, L., Gawthrop, P.: On the estimation of continuous time transfer functions. Int. J. Control 74(9), 889–904 (2001).  https://doi.org/10.1080/00207170110037894 MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Welty, J.R., Wicks, C.E., Rorrer, G., Wilson, R.E.: Fundamentals of momentum, heat, and mass transfer. Wiley, Hoboken (2009)Google Scholar
  50. 50.
    Wiener, D., SPINA, J.: Sinusoidal Analysis and Modelling of weakly Non-linear Circuits. Van Nostrand Reinhold, New York (1980)Google Scholar
  51. 51.
    Winder, S.: Analog and Digital Filter Design. Newnes, Burlington (2002)Google Scholar
  52. 52.
    Young, P.C.: Recursive Estimation and Time-series Analysis: An Introduction for the Student and Practitioner. Springer, Berlin (2011)CrossRefGoogle Scholar
  53. 53.
    Zhang, B., Billings, S.: Identification of continuous-time nonlinear systems: the nonlinear difference equation with moving average noise (ndema) framework. Mech. Syst. Signal Process. 60, 810–835 (2015)CrossRefGoogle Scholar
  54. 54.
    Zhao, Y., Baleanu, D., Cattani, C., Cheng, D., Yang, X.: Maxwell’s equations on cantor sets: a local fractional approach. Adv. High Energy Phys. 2013, 6 (2013)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Walid Allafi
    • 1
  • Ivan Zajic
    • 2
  • Kotub Uddin
    • 3
  • Zhonghua Shen
    • 4
  • James Marco
    • 1
  • Keith Burnham
    • 5
  1. 1.WMG, University of WarwickCoventryUK
  2. 2.School of Mechanical, Aerospace and Automotive Engineering, Faculty of Engineering, Environment and ComputingCoventry UniversityCoventryUK
  3. 3.OVO EnergyLondonUK
  4. 4.Business SchoolGuangdong University of Foreign StudiesGuangzhouChina
  5. 5.Faculty of Science and EngineeringUniversity of WolverhamptonWolverhamptonUK

Personalised recommendations