Advertisement

Nonlinear Dynamics

, Volume 94, Issue 4, pp 2643–2654 | Cite as

Observation of interaction phenomena for two dimensionally reduced nonlinear models

  • Fu-Hong Lin
  • Jian-Ping Wang
  • Xian-Wei Zhou
  • Wen-Xiu Ma
  • Xing Lü
Original Paper
  • 111 Downloads

Abstract

To study the lump–soliton interaction phenomenon for the (3 + 1)-dimensional nonlinear model with dimensional reduction, interaction solutions have been formulated by combining positive quadratic functions with hyperbolic function in bilinear equations. The collision between lump and soliton has been analyzed and simulated. When the lump is induced by a bounded twin soliton, the rogue wave turns up, which can only be visible at an instant time. Based on the solutions, it is easy to find the amplitude, the place and the arrival time of the rogue waves. The mechanism investigated in this paper may shed some light on the study of rogue waves in oceanography, fluid dynamics and nonlinear optics.

Keywords

Lump Soliton Rogue wave Oceanography 

Notes

Acknowledgements

This work is supported by the National Key R&D Program of China (2017YFC0820700), the National Natural Science Foundation of China under Grant No. 61602034, the Fundamental Research Funds for the Central Universities of China, the Foundation of Beijing Engineering and Technology Research Center for Convergence Networks and Ubiquitous Services and the Open Fund of IPOC (BUPT) under Grant No. IPOC2016B008.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript.

References

  1. 1.
    Wazwaz, A.-M., El-Tantawy, S.A.: New (3 + 1)-dimensional equations of Burgers type and Sharma–Tasso–Olver type: multiple-soliton solutions. Nonlinear Dyn. 87, 2457 (2017)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Manakov, S.V., Zakharov, V.E., Bordag, L.A., Matveev, V.B.: Two-dimensional solitons of the Kadomtsev–Petviashvili equation and their interaction. Phys. Lett. A 63, 205 (1977)CrossRefGoogle Scholar
  3. 3.
    Zabusky, N.J., Kruskal, M.D.: Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240 (2008)CrossRefGoogle Scholar
  4. 4.
    Kadomtsev, B.B., Petviashvili, V.I.: On the stability of solitary waves in weakly dispersing media. Sov. Phys. Dokl. 15, 539 (1970)zbMATHGoogle Scholar
  5. 5.
    Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)CrossRefGoogle Scholar
  6. 6.
    Chow, K.W., Lai, W.C., Shek, C.K., Tso, K.: Positon-like solutions of nonlinear evolution equations in (2 + 1) dimensions. Chaos Solitons Fractals 9, 1901 (1998)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Khatera, A.H., Malfliet, W., Callebautc, D.K., Kamel, E.S.: Travelling wave solutions of some classes of nonlinear evolution equations in (1 + 1) and (2 + 1) dimensions. J. Comput. Appl. Math. 140, 469 (2002)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Lü, X., Ma, W.X., Zhou, Y., Khalique, C.M.: Rational solutions to an extended Kadomtsev–Petviashvili-like equation with symbolic computation. Comput. Math. Appl. 71, 1560 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Lü, X., Ma, W.X., Chen, S.T., Khalique, C.M.: A note on rational solutions to a Hirota–Satsuma-like equation. Appl. Math. Lett. 58, 13 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Yin, Y.H., Ma, W.X., Liu, J.G., Lü, X.: Diversity of exact solutions to a (3 + 1)-dimensional nonlinear evolution equation and its reduction. Comput. Math. Appl. (2018).  https://doi.org/10.1016/j.camwa.2018.06.020 MathSciNetCrossRefGoogle Scholar
  11. 11.
    Lü, X., Wang, J.P., Lin, F.H., Zhou, X.W.: Lump dynamics of a generalized two-dimensional Boussinesq equation in shallow water. Nonlinear Dyn. 91, 1249 (2018)CrossRefGoogle Scholar
  12. 12.
    Gao, L.N., Zi, Y.Y., Ma, W.X., Lü, X.: Bäklund transformation, multiple wave solutions and lump solutions to a (3 + 1)-dimensional nonlinear evolution equation. Nonlinear Dyn. 89, 2233 (2017)CrossRefGoogle Scholar
  13. 13.
    Lü, X., Ma, W.X., Yu, J., Khalique, C.M.: Solitary waves with the Madelung fluid description: a generalized derivative nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 31, 40 (2016)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Wang, D.S., Yin, Y.B.: Symmetry analysis and reductions of the two-dimensional generalized Benney system via geometric approach. Comput. Math. Appl. 71, 748 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Lü, X., Lin, F.H.: Soliton excitations and shape-changing collisions in alphahelical proteins with interspine coupling at higher order. Commun. Nonlinear Sci. Numer. Simul. 32, 241 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Lin, F.H., Chen, S.T., Qu, Q.X., Wang, J.P., Zhou, X.W., Lü, X.: Resonant multiple wave solutions to a new (3 + 1)-dimensional generalized Kadomtsev–Petviashvili equation: linear superposition principle. Appl. Math. Lett. 78, 112 (2018)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Lou, S.Y.: Generalized dromion solutions of the (2 + 1)-dimensional KdV equation. J. Phys. A 28, 7227 (1995)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Ma, W.X.: Wronskian solutions to integrable equations. Discrete Contin. Dyn. Syst. Suppl. 2009, 506 (2009)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Ma, W.X.: Lump solutions to the Kadomtsev–Petviashvili equation. Phys. Lett. A 379, 1975 (2015)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Manakov, S.V., Zakharov, V.E., Bordag, L.A., Matveev, V.B.: Two-dimensional solitons of the Kadomtsev–Petviashvili equation and their interaction. Phys. Lett. A 63, 205 (1977)CrossRefGoogle Scholar
  21. 21.
    Johnson, R.S., Thompson, S.: A solution of the inverse scattering problem for the Kadomtsev–Petviashvili equation by the method of separation of variables. Phys. Lett. A 66, 279 (1978)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Satsuma, J., Ablowitz, M.J.: Two-dimensional lumps in nonlinear dispersive systems. J. Math. Phys. 20, 1496 (1979)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Kaup, D.J.: The lump solutions and the Bäcklund transformation for the three-dimensional three-wave resonant interaction. J. Math. Phys. 22, 1176 (1981)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Gilson, C.R., Nimmo, J.J.C.: Lump solutions of the BKP equation. Phys. Lett. A 147, 472 (1990)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Imai, K.: Dromion and lump solutions of the Ishimori-I equation. Prog. Theor. Phys. 98, 1013 (1997)CrossRefGoogle Scholar
  26. 26.
    Fokas, A.S., Pelinovsky, D.E., Sulem, C.: Interaction of lumps with a line soliton for the DSII equation. Physica D 152–153, 189 (2001)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Lü, X., Chen, S.T., Ma, W.X.: Constructing lump solutions to a generalized Kadomtsev–Petviashvili–Boussinesq equation. Nonlinear Dyn. 86, 523 (2016)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Lü, X., Ma, W.X.: Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation. Nonlinear Dyn. 85, 1217 (2016)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Yang, J.Y., Ma, W.X.: Abundant interaction solutions of the KP equation. Nonlinear Dyn. 89, 1539 (2017)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Tang, Y.N., Tao, S.Q., Guan, Q.: Lump solitons and the interaction phenomena of them for two classes of nonlinear evolution equations. Comput. Math. Appl. 72, 2334 (2016)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Jia, M., Lou, S. Y.: A Novel Type of Rogue Waves with Predictability in Nonlinear Physics. arXiv:1710.06604
  32. 32.
    Lou, S.Y., Lin, J.: Rogue waves in nonintegrable KdV-Type systems. Chin. Phys. Lett. 35, 050202 (2018)CrossRefGoogle Scholar
  33. 33.
    Müller, P., Garrett, C., Osborne, A.: Roguewaves. Oceanography 18, 66 (2005)CrossRefGoogle Scholar
  34. 34.
    Solli, D.R., Ropers, C., Koonath, P., Jalali, B.: Optical rogue waves. Nature 450, 1054 (2007)CrossRefGoogle Scholar
  35. 35.
    Yan, Z.Y.: Financial rogue waves. Commun. Theor. Phys. 54, 947 (2010)CrossRefGoogle Scholar
  36. 36.
    Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  37. 37.
    Gao, L.N., Zhao, X.Y., Zi, Y.Y., Yu, J., Lü, X.: Resonant behavior of multiple wave solutions to a Hirota bilinear equation. Comput. Math. Appl. 72, 1225 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Fu-Hong Lin
    • 1
  • Jian-Ping Wang
    • 1
  • Xian-Wei Zhou
    • 1
  • Wen-Xiu Ma
    • 2
    • 3
    • 4
  • Xing Lü
    • 1
    • 5
  1. 1.School of Computer and Communication EngineeringUniversity of Science and Technology BeijingBeijingChina
  2. 2.Department of Mathematics and StatisticsUniversity of South FloridaTampaUSA
  3. 3.College of Mathematics and Systems ScienceShandong University of Science and TechnologyQingdaoChina
  4. 4.International Institute for Symmetry Analysis and Mathematical Modelling, Department of Mathematical SciencesNorth-West UniversityMmabathoSouth Africa
  5. 5.Beijing Engineering and Technology Research Center for Convergence Networks and Ubiquitous ServicesBeijingChina

Personalised recommendations