Advertisement

Nonlinear Dynamics

, Volume 94, Issue 4, pp 2575–2612 | Cite as

Nonlinear dynamics of a viscoelastic sandwich beam with parametric excitations and internal resonance

  • Bo Zhu
  • Youheng Dong
  • Yinghui Li
Original Paper
  • 373 Downloads

Abstract

Nonlinear dynamical behaviors of an axially accelerating viscoelastic sandwich beam subjected to three-to-one internal resonance and parametric excitations resulting from simultaneous velocity and tension fluctuations are investigated. The direct method of multiple scales is adopted to obtain a set of first-order ordinary differential equations and associated boundary conditions. The frequency and amplitude response curves along with their stability and bifurcation are numerically studied. A great number of dynamic behaviors are presented in the form of phase portraits, time traces, Poincaré sections, and FFT power spectra. Due to modal interaction, various periodic, quasiperiodic, and chaotic behaviors are displayed, depending on the initial conditions. The largest Lyapunov exponent is carried out to determine the midly chaotic response by the convergent form of exponents. Numerical results show various oscillatory behaviors indicating the influence of internal resonance and coupled effects of fluctuating axial velocity and tension.

Keywords

Axially accelerating viscoelastic sandwich beam Internal resonance Parametric resonance Method of multiple scales Bifurcation Stability 

Notes

Acknowledgements

The authors are grateful for the support of the National Natural Science Foundation of China (Nos. 11372257, 11472064, 11602208, and 51674216) and the project of Chongqing University of Science and Technology (No. Shljzyh2017-007).

References

  1. 1.
    Öz, H.R., Pakdemirli, M.: Vibrations of an axially moving beam with time-dependent velocity. J. Sound Vib. 227(2), 239–257 (1999)CrossRefGoogle Scholar
  2. 2.
    Öz, H.R.: On the vibrations of an axially travelling beam on fixed supports with variable velocity. J. Sound Vib. 239(3), 556–564 (2001)CrossRefGoogle Scholar
  3. 3.
    Özkaya, E., Pakdemirli, M.: Vibrations of an axially accelerating beam with small flexural stiffness. J. Sound Vib. 234(3), 521–535 (2000)CrossRefGoogle Scholar
  4. 4.
    Parker, R.G., Lin, Y.: Parametric instability of axially moving media subjected to multifrequency tension and speed fluctuations. J. Appl. Mech. 68, 49–57 (2001)CrossRefGoogle Scholar
  5. 5.
    Chen, L.Q., Yang, X.D., Cheng, C.J.: Dynamic stability of an axially accelerating viscoelastic beam. Eur. J. Mech. A Solids 23, 659–666 (2004)CrossRefGoogle Scholar
  6. 6.
    Yang, X.D., Chen, L.Q.: Non-linear forced vibration of axially moving viscoelastic beams. Acta Mech. Solida Sin. 19(4), 365–373 (2006)CrossRefGoogle Scholar
  7. 7.
    Chen, L.Q., Wang, B.: Stability of axially accelerating viscoelastic beams: asymptotic perturbation analysis and differential quadrature validation. Eur. J. Mech. A Solids 28, 786–791 (2009)CrossRefGoogle Scholar
  8. 8.
    Sahoo, B., Panda, L.N., Pohit, G.: Two-frequency parametric excitation and internal resonance of a moving viscoelastic beam. Nonlinear Dyn. 82, 1721–1742 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Sahoo, B., Panda, L.N., Pohit, G.: Stability, bifurcation and chaos of a traveling viscoelastic beam tuned to 3:1 internal resonance and subjected to parametric excitation. Int. J. Bifurc. Chaos 27(2), 1750017–1–20 (2017)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Tang, Y.Q., Zhang, D.B., Gao, J.M.: Parametric and internal resonance of axially accelerating viscoelastic beams with the recognition of longitudinally varying tensions. Nonlinear Dyn. 83, 401–418 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Özhan, B.B., Pakdemirli, M.: A general solution procedure for the forced vibrations of a system with cubic nonlinearities: three-to-one internal resonances with external excitation. J. Sound Vib. 329, 2603–2615 (2010)CrossRefGoogle Scholar
  12. 12.
    Sze, K.Y., Chen, S.H., Huang, J.L.: The incremental harmonic balance method for nonlinear vibration of axially moving beams. J. Sound Vib. 281, 611–626 (2005)CrossRefGoogle Scholar
  13. 13.
    Ghayesh, M.H.: Nonlinear forced dynamics of an axially moving viscoelastic beam with an internal resonance. Int. J. Mech. Sci. 53, 1022–1037 (2011)CrossRefGoogle Scholar
  14. 14.
    Marynowski, K., Kapitaniak, T.: Zener internal damping in modelling of axially moving viscoelastic beam with time-dependent tension. Int. J. Non-Linear Mech. 42, 118–131 (2007)CrossRefGoogle Scholar
  15. 15.
    Ding, H., Zhu, M.H., Chen, L.Q.: Nonlinear vibration isolation of a viscoelastic beam. Nonlinear Dyn. 92, 325–349 (2018)CrossRefGoogle Scholar
  16. 16.
    Kazemirad, S., Ghayesh, M.H., Amabili, M.: Thermo-mechanical nonlinear dynamics of a buckled axially moving beam. Arch. Appl. Mech. 83, 25–42 (2013)CrossRefGoogle Scholar
  17. 17.
    Ghayesh, M.H., Amabili, M., Farokhi, H.: Global dynamics of an axially moving buckled beam. J. Vib. Control 21(1), 195–208 (2015)CrossRefGoogle Scholar
  18. 18.
    Ghayesh, M.H., Amabili, M.: Nonlinear stability and bifurcations of an axially moving beam in thermal environment. J. Vib. Control 21(15), 2981–2994 (2015)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Özkaya, E., Öz, H.R.: Determination of natural frequencies and stability regions of axially moving beams using artificial neural networks method. J. Sound Vib. 252(4), 782–789 (2002)CrossRefGoogle Scholar
  20. 20.
    Özkaya, E., Pakdemirli, M.: Group-theoretic approach to axially accelerating beam problem. Acta Mech. 155, 111–123 (2002)CrossRefGoogle Scholar
  21. 21.
    Chen, S.H., Huang, J.L., Sze, K.Y.: Multidimensional Lindstedt–Poincaré Method for nonlinear vibration of axially moving beams. J. Sound Vib. 306, 1–11 (2007)CrossRefGoogle Scholar
  22. 22.
    Gavete, L., Ureña, F., Benito, J.J., Salete, E.: A note on the dynamic analysis using the generalized finite difference method. J. Comput. Appl. Math. 252, 132–147 (2013)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Zhang, W., Wang, D.M., Yao, M.H.: Using Fourier differential quadrature method to analyze transverse nonlinear vibrations of an axially accelerating viscoelastic beam. Nonlinear Dyn. 78, 839–856 (2014)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Zhao, Z.J., Liu, Y., Guo, F., Fu, Y.: Modelling and control for a class of axially moving nonuniform system. Int. J. Syst. Sci. 48(4), 849–861 (2017)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Mokhtari, A., Mirdamadi, H.R.: Study on vibration and stability of an axially translating viscoelastic Timoshenko beam: non-transforming spectral element analysis. Appl. Math. Model. 56, 342–358 (2018)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Ding, H., Wang, S., Zhang, Y.W.: Free and forced nonlinear vibration of a transporting belt with pulley support ends. Nonlinear Dyn. 92, 2037–2048 (2018)CrossRefGoogle Scholar
  27. 27.
    Ding, H., Lim, C.W., Chen, L.Q.: Nonlinear vibration of a traveling belt with non-homogeneous boundaries. J. Sound Vib. 424, 78–93 (2018)CrossRefGoogle Scholar
  28. 28.
    Shi, Y.M., Sol, H., Hua, H.X.: Material parameter identification of sandwich beams by an inverse method. J. Sound Vib. 290, 1234–1255 (2006)CrossRefGoogle Scholar
  29. 29.
    Daya, E.M., Azrar, L., Potier-Ferry, M.: An amplitude equation for the non-linear vibration of viscoelastically damped sandwich beams. J. Sound Vib. 271, 789–813 (2004)CrossRefGoogle Scholar
  30. 30.
    Jacques, N., Daya, E.M., Potier-Ferry, M.: Nonlinear vibration of viscoelastic sandwich beams by the harmonic balance and finite element methods. J. Sound Vib. 329, 4251–4265 (2010)CrossRefGoogle Scholar
  31. 31.
    Galucio, A.C., Deü, J.F., Ohayon, R.: Finite element formulation of viscoelastic sandwich beams using fractional derivative operators. Comput. Mech. 33, 282–291 (2004)CrossRefGoogle Scholar
  32. 32.
    Palmeri, A., Ntotsios, E.: Transverse vibrations of viscoelastic sandwich beams via Galerkin-based state-space approach. J. Eng. Mech. 142(7), 04016036–1–12 (2016)CrossRefGoogle Scholar
  33. 33.
    Marynowski, K.: Dynamic analysis of an axially moving sandwich beam with viscoelastic core. Compos. Struct. 94, 2931–2936 (2012)CrossRefGoogle Scholar
  34. 34.
    Alvelid, M.: Sixth order differential equation for sandwich beam deflection including transverse shear. Compos. Struct. 102, 29–37 (2013)CrossRefGoogle Scholar
  35. 35.
    Jin, G.Y., Yang, C.M., Liu, Z.G.: Vibration and damping analysis of sandwich viscoelastic-core beam using Reddy’s higher-order theory. Compos. Struct. 140, 390–409 (2016)CrossRefGoogle Scholar
  36. 36.
    Boumediene, F., Daya, E.M., Cadou, J.M., Duigou, L.: Forced harmonic response of viscoelastic sandwich beams by a reduction method. Mech. Adv. Mater. Struct. 23(11), 1290–1299 (2016)CrossRefGoogle Scholar
  37. 37.
    Lv, H.W., Li, L., Li, Y.H.: Non-linearly parametric resonances of an axially moving viscoelastic sandwich beam with time-dependent velocity. Appl. Math. Model. 53, 83–105 (2018)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Li, Y.H., Dong, Y.H., Qin, Y., Lv, H.W.: Nonlinear forced vibration and stability of an axially moving viscoelastic sandwich beam. Int. J. Mech. Sci. 138–139, 131–145 (2018)CrossRefGoogle Scholar
  39. 39.
    Demir, O., Balkan, D., Peker, R.C., Metin, M., Arikoglu, A.: Vibration analysis of curved composite sandwich beams with viscoelastic core by using differential quadrature method. J. Sandwich Struct. Mater. 0(0), 1–28 (2018)Google Scholar
  40. 40.
    Abdelhafez, H.M.: Resonance of a nonlinear forced system with two-frequency parametric and self-excitations. Math. Comput. Simul. 66(1), 69–83 (2004)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Sahebkar, S.M., Ghazavi, M.R., Khadem, S.E., Ghayesh, M.H.: Nonlinear vibration analysis of an axially moving drillstring system with time dependent axial load and axial velocity in inclined well. Mech. Mach. Theory 46, 743–760 (2011)CrossRefGoogle Scholar
  42. 42.
    Özhan, B.B.: Vibration and stability analysis of axially moving beams with variable speed and axial force. Int. J. Struct. Stab. Dyn. 14(6), 1450015 (2014)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Lv, H.W., Li, Y.H., Li, L., Liu, Q.K.: Transverse vibration of viscoelastic sandwich beam with time-dependent axial tension and axially varying moving velocity. Appl. Math. Model. 38, 2558–2585 (2014)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)zbMATHGoogle Scholar
  45. 45.
    Nayfeh, A.H.: Nonlinear Interactions. Wiley, New York (1998)Google Scholar
  46. 46.
    Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, New York (1981)zbMATHGoogle Scholar
  47. 47.
    Panda, L.N., Kar, R.C.: Nonlinear dynamics of a pipe conveying pulsating fluid with combination, principal parametric and internal resonances. J. Sound Vib. 309, 375–406 (2008)CrossRefGoogle Scholar
  48. 48.
    Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics. Wiley, New York (1995)CrossRefGoogle Scholar
  49. 49.
    Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)CrossRefGoogle Scholar
  50. 50.
    Chin, C.M., Nayfeh, A.H.: Three-to-one internal resonances in parametrically excited hinged-clamped beams. Nonlinear Dyn. 20, 131–158 (1999)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.School of Mechanics and EngineeringSouthwest Jiaotong UniversityChengduChina

Personalised recommendations