Advertisement

Energy harvesting in a Mathieu–van der Pol–Duffing MEMS device using time delay

  • Mohamed Belhaq
  • Zakaria Ghouli
  • Mustapha Hamdi
Original Paper

Abstract

This paper investigates quasi-periodic vibration-based energy harvesting in a delayed nonlinear MEMS device consisting of a delayed Mathieu–van der Pol–Duffing type oscillator coupled to a delayed piezoelectric coupling mechanism. We use the multiple scales method to approximate the quasi-periodic response and the related power output near the principal parametric resonance. The effect of time delay on the energy harvesting performance is studied. It is shown that for appropriate combination of time delay parameters, there exists an optimum range of excitation frequency beyond the resonance where quasi-periodic vibration-based energy harvesting is maximum. Numerical simulations are performed to confirm the analytical predictions.

Keywords

Energy harvesting Delayed Mathieu–van der Pol–Duffing oscillator Quasi-periodic vibrations Delayed piezoelectric coupling 

References

  1. 1.
    Cook-Chennault, K.A., Thambi, N., Sastry, A.M.: Powering MEMS portable devices-a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater. Struct. 17, 043001 (2008)CrossRefGoogle Scholar
  2. 2.
    Pandey, M., Rand, R., Zehnder, A.: Perturbation analysis of entrainment in a micromechanical limit cycle oscillator. Commun. Nonlinear Sci. Numer. Simulat. 12, 1291–1301 (2007)CrossRefzbMATHGoogle Scholar
  3. 3.
    Belhaq, M., Fahsi, A.: 2:1 and 1:1 frequency-locking in fast excited van der Pol–Mathieu–Duffing oscillator. Nonlinear Dyn. 53, 139–152 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Pandey, M., Aubin, K., Zalalutdinov, M., Zehnder, A., Rand, R.: Analysis of frequency locking optically driven MEMS resonators. IEEE J. Microelectromech. Syst. 15, 1546–1554 (2005)CrossRefGoogle Scholar
  5. 5.
    Aubin, K.L., Pandey, M., Zehnder, A.T., Rand, R.H., Craighead, H.G., Zalalutdinov, M., Parpia, J.M.: Frequency entrainment for micromechanical oscillator. Appl. Phys. Lett. 83, 3281–3283 (2003)CrossRefGoogle Scholar
  6. 6.
    Aubin, K., Zalalutdinov, M., Alan, T., Reichenbach, R., Rand, R., Zehnder, A., Parpia, J., Craighead, H.: Limit cycle oscillations in CW laser driven NEMS. IEEE/ASME J. Micromech. Syst. 13, 1018–1026 (2004)CrossRefGoogle Scholar
  7. 7.
    Szabelski, K., Warminski, J.: Self excited system vibrations with parametric and external excitations. J. Sound Vib. 187, 595–607 (1995)CrossRefzbMATHGoogle Scholar
  8. 8.
    Fahsi, A., Belhaq, M.: Effect of fast harmonic excitation on frequency-locking in a van der Pol–Mathieu–Duffing oscillator. Commun. Nonlinear Sci. Numer. Simulat. 14, 244–253 (2009)CrossRefGoogle Scholar
  9. 9.
    Pandey, M., Rand, R., Zehnder, A.: Frequency locking in a forced Mathieu–van der Pol–Duffing system. Nonlinear Dyn. 54, 3–12 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Design of piezoaeroelastic energy harvesters. Nonlinear Dyn. 68, 519–530 (2012)CrossRefGoogle Scholar
  11. 11.
    Bibo, A., Daqaq, M.F.: Energy harvesting under combined aerodynamic and base excitations. J. Sound Vib. 332, 5086–5102 (2013)CrossRefGoogle Scholar
  12. 12.
    Hamdi, M., Belhaq, M.: Quasi-periodic vibrations in a delayed van der Pol oscillator with time-periodic delay amplitude. J. Vib. Control (2015).  https://doi.org/10.1177/1077546315597821
  13. 13.
    Warminski, J.: Frequency locking in a nonlinear MEMS oscillator driven by harmonic force and time delay. Int. J. Dynam. Control. 3, 122–136 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kirrou, I., Belhaq, M.: On the quasi-periodic response in the delayed forced Duffing oscillator. Nonlinear Dyn. 84, 2069–2078 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Belhaq, M., Hamdi, M.: Energy harvesting from quasi-periodic vibrations. Nonlinear Dyn. 86, 2193–2205 (2016)CrossRefGoogle Scholar
  16. 16.
    Ghouli, Z., Hamdi, M., Lakrad, F., Belhaq, M.: Quasiperiodic energy harvesting in a forced and delayed Duffing harvester device. J. Sound Vib. 407, 271–285 (2017)CrossRefGoogle Scholar
  17. 17.
    Ghouli, Z., Hamdi, M., Belhaq, M.: Energy harvesting from quasi-periodic vibrations using electromagnetic coupling with delay. Nonlinear Dyn. 89, 1625–1636 (2017)CrossRefGoogle Scholar
  18. 18.
    Erturk, A., Inman, D.J.: On mechanical modeling of cantilevered piezoelectric vibration energy harvesters. J. Intell. Mater. Syst. Struct. 19, 1311–1325 (2008)CrossRefGoogle Scholar
  19. 19.
    Erturk, A., Inman, D.J.: An experimentally validated bimorph c antilever model for piezoelectric energy harvesting from base excitations. Smart Mater. Struct. 18, 025009 (2009)CrossRefGoogle Scholar
  20. 20.
    Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Modeling and analysis of piezoaerolastic energy harvesters. Nonlinear Dyn. 67, 925–939 (2011)CrossRefGoogle Scholar
  21. 21.
    Hamdi, M., Belhaq, M.: Quasi-periodic oscillation envelopes and frequency locking in excited nonlinear systems with time delay. Nonlinear Dyn. 73, 1–15 (2013)CrossRefzbMATHGoogle Scholar
  22. 22.
    Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)zbMATHGoogle Scholar
  23. 23.
    Belhaq, M., Houssni, M.: Quasi-periodic oscillations, chaos and suppression of chaos in a nonlinear oscillator driven by parametric and external excitations. Nonlinear Dyn. 18, 1–24 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Shampine, L.F., Thompson, S.: Solving delay differential equations with dde23. http://www.radford.edu/~thompson/webddes/tutorial.pdf. Accessed 23 Mar 2000 (2000)

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Mohamed Belhaq
    • 1
  • Zakaria Ghouli
    • 1
  • Mustapha Hamdi
    • 2
  1. 1.Faculty of Sciences Aïn ChockUniversity Hassan II of CasablancaCasablancaMorocco
  2. 2.Faculty of Science and Technology-Al HoceimaUniversity Mohammed IOujdaMorocco

Personalised recommendations