Advertisement

Neimark–Sacker bifurcation and chaos control in discrete-time predator–prey model with parasites

  • Umer Saeed
  • Irfan Ali
  • Qamar Din
Original Paper
  • 77 Downloads

Abstract

In this paper, we discuss the qualitative behavior of a four-dimensional discrete-time predator–prey model with parasites. We investigate existence and uniqueness of positive steady state and find parametric conditions for local asymptotic stability of positive equilibrium point of given system. It is also proved that the system undergoes Neimark–Sacker bifurcation (NSB) at positive equilibrium point with the help of an explicit criterion for NSB. The system shows chaotic dynamics at increasing values of bifurcation parameter. Chaos control is also discussed through implementation of hybrid control strategy, which is based on feedback control methodology and parameter perturbation. Finally, numerical simulations are conducted to illustrate theoretical results.

Keywords

Predator–prey system Local stability Neimark–Sacker bifurcation Chaos control 

Notes

Acknowledgements

The authors thank the anonymous referees for their valuable comments and suggestions leading to improvement of this paper.

Funding

Funding will be provided by School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad, Pakistan, for the publication of this paper.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest. They have no competing financial, professional, or personal interests that might have influenced the performance of the work described in this manuscript.

References

  1. 1.
    Lafferty, K.D.: Parasites in marine food webs. Bull. Mar. Sci. 89(1), 123–134 (2013)CrossRefGoogle Scholar
  2. 2.
    Packer, C., Holt, R.D., Hudson, P.J., Lafferty, K.D., Dobson, A.P.: Keeping the herds healthy and alert: implications of predator control for infectious disease. Ecol. Lett. 6, 792–802 (2003)CrossRefGoogle Scholar
  3. 3.
    Libersat, F., Delago, A., Gal, R.: Manipulation of host behavior by parasitic insects and insect parasites. Annu. Rev. Entomol. 54, 189–207 (2009)CrossRefGoogle Scholar
  4. 4.
    Sato, T., et al.: Nematomorph parasites indirectly alter the food web and ecosystem function of streams through behavioural manipulation of their cricket hosts. Ecol. Lett. 15, 786–793 (2012)CrossRefGoogle Scholar
  5. 5.
    Lafferty, K.D., Dobson, A.P., Kuris, A.M.: Parasites dominate food web links. Proc. Natl. Acad. Sci. USA 103, 11211–11216 (2006)CrossRefGoogle Scholar
  6. 6.
    Keeling, M.J., Bjørnstad, O.N., Grenfell, B.T.: Metapopulation dynamics of infectious diseases. In: Ecology, Genetics and Evolution of Metapopulations, pp. 415–445 (2004)Google Scholar
  7. 7.
    Lafferty, K.D., Morris, A.K.: Altered behaviour of parasitized killfish increases susceptibility to predation by bird final hosts. Ecology 77, 1390–1397 (1996)CrossRefGoogle Scholar
  8. 8.
    Bairagi, N., Roy, P.K., Chattopadhyay, J.: Role of infection on the stability of a predator–prey system with several response functions: a comparative study. J. Theor. Biol. 248, 10–25 (2007)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Din, Q.: Global behavior of a host-parasitoid model under the constant refuge effect. Appl. Math. Model. 40(4), 2815–2826 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Din, Q., Khan, M.A., Saeed, U.: Qualitative behaviour of generalised Beddington model. Z. Naturforsch. A 71(2), 145–155 (2016)CrossRefGoogle Scholar
  11. 11.
    Din, Q., Gümüş, Ö.A., Khalil, H.: Neimark–Sacker bifurcation and chaotic behaviour of a modified host-parasitoid model. Z. Naturforsch. A 72(1), 25–37 (2017)CrossRefGoogle Scholar
  12. 12.
    Din, Q.: Global stability of Beddington model. Qual. Theor. Dyn. Syst. 16(2), 391–415 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Din, Q.: Global stability and Neimark–Sacker bifurcation of a host–parasitoid model. Int. J. Syst. Sci. 48(6), 1194–1202 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hudson, P.J., Dobson, A., Newborn, D.: Prevention of population cycles by parasite removal. Science 282, 2256–2258 (1998)CrossRefGoogle Scholar
  15. 15.
    Fenton, A., Rands, S.A.: The impact of parasite manipulation and predator foraging behavior on predator–prey communities. Ecology 87, 2832–2841 (2006)CrossRefGoogle Scholar
  16. 16.
    Jang, S.R.-J., Baglama, J.: Continuous-time predator–prey models with parasites. J. Biol. Dyn. 3(1), 87–98 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Ahmad, S.: On the nonautonomous Lotka–Volterra competition equation. Proc. Am. Math. Soc. 117, 199–204 (1993)CrossRefzbMATHGoogle Scholar
  18. 18.
    Tang, X., Zou, X.: On positive periodic solutions of Lotka–Volterra competition systems with deviating arguments. Proc. Am. Math. Soc. 134, 2967–2974 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Zhou, Z., Zou, X.: Stable periodic solutions in a discrete periodic logistic equation. Appl. Math. Lett. 16(2), 165–171 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Liu, X.: A note on the existence of periodic solution in discrete predator–prey models. Appl. Math. Model. 34, 2477–2483 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Freedman, H.I.: Deterministic Mathematical Models in Population Ecology. Marcel Dekker, New York (1980)zbMATHGoogle Scholar
  22. 22.
    Goh, B.S.: Management and Analysis of Biological Populations. Elsevier Scientific, Amsterdam (1980)Google Scholar
  23. 23.
    Din, Q.: Neimark–Sacker bifurcation and chaos control in Hassell–Varley model. J. Differ. Equ. Appl. 23, 741–762 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    He, Z., Lai, X.: Bifurcation and chaotic behavior of a discrete-time predator–prey system. Nonlinear Anal. Real World Appl. 12, 403–417 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Din, Q., Elsadany, A.A., Khalil, H.: Neimark–Sacker bifurcation and chaos control in a fractional-order plant-herbivore model. Discrete Dyn. Nat. Soc. Article ID 6312964, 1–15 (2017)Google Scholar
  26. 26.
    Curtiss, D.R.: Recent extensions of Descartes’ rule of signs. Ann. Math. 19(4), 251–278 (1918)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Grove, E.A., Ladas, G.: Periodicities in Nonlinear Difference Equations. Chapman and Hall/CRC Press, Boca Raton (2004)CrossRefzbMATHGoogle Scholar
  28. 28.
    Wen, G.: Criterion to identify Hopf bifurcations in maps of arbitrary dimension. Phys. Rev. E 72, Article ID 026201, 4 pages (2005)Google Scholar
  29. 29.
    Lynch, S.: Dynamical Systems with Applications Using Mathematica. Birkhauser, Boston (2007)zbMATHGoogle Scholar
  30. 30.
    Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64(11), 1196–1199 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Romeiras, F.J., Grebogi, C., Ott, E., Dayawansa, W.P.: Controlling chaotic dynamical systems. Phys. D 58, 165–192 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Luo, X.S., Chen, G.R., Wang, B.H.: Hybrid control of period-doubling bifurcation and chaos in discrete nonlinear dynamical systems. Chaos Soliton Fract. 18, 775–783 (2003)CrossRefzbMATHGoogle Scholar
  33. 33.
    Din, Q.: Bifurcation analysis and chaos control in discrete-time glycolysis models. J. Math. Chem. 56(3), 904–931 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Din, Q., Donchev, T., Kolev, D.: Stability, bifurcation analysis and chaos control in chlorine dioxide–iodine–malonic acid reaction. MATCH Commun. Math. Comput. Chem. 79(3), 577–606 (2018)MathSciNetGoogle Scholar
  35. 35.
    Din, Q.: Controlling chaos in a discrete-time prey–predator model with Allee effects. Int. J. Dyn. Control 6(2), 858–872 (2018)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Din, Q.: Qualitative analysis and chaos control in a density-dependent host–parasitoid system. Int. J. Dyn. Control 6(2), 778–798 (2018)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Din, Q., Elsadany, A.A., Ibrahim, S.: Bifurcation analysis and chaos control in a second-order rational difference equation. Int. J. Nonlinear Sci. Numer. Simul. 19(1), 53–68 (2018)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Din, Q., Hussain, M.: Controlling chaos and Neimark–Sacker bifurcation in a host-parasitoid model. Asain J. Control (2018).  https://doi.org/10.1002/asjc.1809
  39. 39.
    Din, Q.: Complexity and chaos control in a discrete-time prey–predator model. Commun. Nonlinear Sci. Numer. Simul. 49, 113–134 (2017)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Din, Q., Saeed, U.: Bifurcation analysis and chaos control in a host–parasitoid model. Math. Methods Appl. Sci. 40(14), 5391–5406 (2017)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.NUST Institute of Civil EngineeringNational University of Sciences and TechnologyIslamabadPakistan
  2. 2.School of Natural SciencesNational University of Sciences and Technology (NUST)IslamabadPakistan
  3. 3.Department of MathematicsThe University of Poonch RawalakotRawalakotPakistan

Personalised recommendations