Advertisement

A repeated yielding model under periodic perturbation

  • Yiwen Tao
  • Xueping Li
  • Jingli Ren
Original Paper

Abstract

The Ananthakrishna model, seeking to explain the phenomenon of repeated yielding of materials, is studied with or without periodic perturbation. For the unforced model, Hopf bifurcation, degenerate Hopf bifurcation and saddle-node bifurcation are detected. For the periodically forced model, two elementary periodic mechanisms are analyzed corresponding to five bifurcation cases of the unforced one. Rich dynamical behaviors arise, including stable and unstable periodic solutions of different periods, quasi-periodic solutions, chaos through torus destruction or cascade of period doublings. Moreover, even small change of a parameter can lead to bifurcation of different periodic solutions. Finally, according to the forced Ananthakrishna model, four types of stress–time curves are simulated, which can well interpret various experimental phenomena of repeated yielding.

Keywords

Ananthakrishna model Bifurcation Attractor Periodically forced Repeated yielding 

Notes

Acknowledgements

This research is supported by the National Natural Science Foundation of China (11771407), the Innovative Research Team of Science and Technology in Henan Province (17IRTSTHN007) and the National Key R&D Program of China (2017YFB0702500).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript.

References

  1. 1.
    Zhang, Y., Liu, J.P., Chen, S.Y., Xie, X., Liaw, P.K., Dahmen, K.A., Qiao, J.W., Wang, Y.L.: Serration and noise behaviors in materials. Prog. Mater. Sci. 90, 358–460 (2017)CrossRefGoogle Scholar
  2. 2.
    Lee, S.Y., Lee, S.I., Hwang, B.: Effect of strain rate on tensile and serration behaviors of an austenitic Fe–22Mn–0.7C twinning-induced plasticity steel. Mater. Sci. Eng. A 711, 22–28 (2018)CrossRefGoogle Scholar
  3. 3.
    Serajzadeh, S., Akhgar, J.M.: A study on strain ageing during and after warm rolling of a carbon steel. Mater. Lett. 62(6–7), 946–948 (2008)CrossRefGoogle Scholar
  4. 4.
    Hu, Q., Zhang, Q.C., Cao, P.T., Fu, S.H.: Thermal analyses and simulations of the type A and type B Portevin-Le Chatelier effects in an Al–Mg alloy. Acta Mater. 60(4), 1647–1657 (2012)CrossRefGoogle Scholar
  5. 5.
    Cai, Y.L., Yang, S.L., Wang, Y.H., Fu, S.H., Zhang, Q.C.: Characterization of the deformation behaviors associated with the serrated flow of a 5456 Al-based alloy using two orthogonal digital image correlation systems. Mater. Sci. Eng. A 664, 155–164 (2016)CrossRefGoogle Scholar
  6. 6.
    Raia, R.K., Sahub, J.K.: Mechanism of serrated flow in a cast nickel base superalloy. Mater. Lett. 210, 298–300 (2018)CrossRefGoogle Scholar
  7. 7.
    Moshtaghin, R.S., Asgari, S.: The characteristics of serrated flow in superalloy IN738LC. Mater. Sci. Eng. A 486(1–2), 376–380 (2008)CrossRefGoogle Scholar
  8. 8.
    Sarmah, R., Ananthakrishna, G., Sun, B.A., Wang, W.H.: Hidden order in serrated flow of metallic glasses. Acta Mater. 59(11), 4482–4493 (2011)CrossRefGoogle Scholar
  9. 9.
    Ren, J.L., Chen, C., Wang, G., Mattern, N., Eckert, J.: Dynamics of serrated flow in a bulk metallic glass. AIP Adv. 1(3), 2158–3226 (2011)CrossRefGoogle Scholar
  10. 10.
    Chen, S.Y., Yu, L.P., Ren, J.L., Xie, X., Li, X.P., Xu, Y., Zhao, G.F., Li, P.Z., Yang, F.Q., Ren, Y., Liaw, P.K.: Self-similar random process and chaotic behavior in serrated flow of high-entropy alloys. Sci. Rep. UK 6, 29798 (2016)CrossRefGoogle Scholar
  11. 11.
    Guo, X.X., Xie, X., Ren, J.L., Laktionova, M., Tabachnikova, E., Yu, L.P., Cheung, W.S., Dahmen, K.A., Liaw, P.K.: Plastic dynamics of the \(Al_{0.5}CoCrCuFeNi\) high entropy alloy at cryogenic temperatures: Jerky flow, stair-like fluctuation, scaling behavior, and non-chaotic state. Appl. Phys. Lett. 111(25), 251905 (2017)CrossRefGoogle Scholar
  12. 12.
    Ren, J.L., Chen, C., Wang, G., Liaw, P.K.: Transition of temporal scaling behavior in percolation assisted shear-branching structure during plastic deformation. Sci. Rep. UK 7, 45083 (2017)CrossRefGoogle Scholar
  13. 13.
    Chen, C., Ren, J.L., Wang, G., Dahmen, K.A., Liaw, P.K.: Scaling behavior and complexity of plastic deformation for a bulk metallic glass at cryogenic temperatures. Phys. Rev. E 92(1), 012113 (2015)CrossRefGoogle Scholar
  14. 14.
    Ren, J.L., Chen, C., Liu, Z.Y., Li, R., Wang, G.: Plastic dynamics transition between chaotic and self-organized critical states in a glassy metal via a multifractal intermediate. Phys. Rev. B 86(13), 134303 (2012)CrossRefGoogle Scholar
  15. 15.
    Ren, J.L., Chen, C., Cheung, W.S., Sun, B.A., Mattern, N., Siegmund, S., Eckert, J.: Various sizes of sliding event bursts in the plastic flow of metallic glasses based on a spatiotemporal dynamic model. J. Appl. Phys. 116(3), 033520 (2014)CrossRefGoogle Scholar
  16. 16.
    Ananthakrishna, G., Sahoo, D.: A model based on nonlinear oscillations to explain jumps on creep curves. J. Phys. D Appl. Phys. 14(11), 2081–2090 (1981)CrossRefGoogle Scholar
  17. 17.
    Valsakumar, M.C., Ananthakrishna, G.: A model based on nonlinear oscillations to explain jumps on creep curves: II. Approximate solutions. J. Phys. D Appl. Phys. 16(6), 1055–1068 (1983)CrossRefGoogle Scholar
  18. 18.
    Ananthakrishna, G., Valsakumar, M.C.: Repeated yield drop phenomenon: a temporal dissipative structure. Phys. D Appl. Phys. 15(12), L171–L175 (1982)CrossRefGoogle Scholar
  19. 19.
    Ananthakrishna, G.: Dislocation dynamics and cooperative behaviour of dislocations. Solid State Phenom. 3–4, 357–367 (1991)CrossRefGoogle Scholar
  20. 20.
    Ananthakrishna, G., Valsakumar, M.C.: Chaotic flow in a model for repeated yielding. Phys. Lett. A 95(2), 69–71 (1983)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Satyanarayana, S.V.M., Sridhar, V., Koka, S.: Characterization of chaos in a serrated plastic flow model. Pramana-J. Phys. 48(4), 871–882 (1997)CrossRefGoogle Scholar
  22. 22.
    Cottrell, A.H., Bilby, B.A.: Dislocation theory of yielding and strain ageing of iron. Proc. R. Soc. Lond. Ser. A 62(1), 49–62 (1949)CrossRefGoogle Scholar
  23. 23.
    Li, X.P., Ren, J.L., Campbell, S.A., Wolkowicz, G.S.K., Zhu, H.P.: How seasonal forcing influences the complexity of a predated-pery system. Discrete Contin. Dyn. B 23(2), 785–807 (2018)MathSciNetGoogle Scholar
  24. 24.
    Ren, J.L., Li, X.P.: Bifurcations in a seasonally forced predator-prey model with generalized Holling type IV functional response. Int. J. Bifurc. Chaos 26(12), 1650203 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, 2nd edn. Springer, New York (2004)CrossRefzbMATHGoogle Scholar
  26. 26.
    Gillis, P.P., Gilman, J.J.: Dynamical dislocation theory of crystal plasticity. I. The yield stress. J. Appl. Phys. 36(11), 3370–3380 (1965)CrossRefGoogle Scholar
  27. 27.
    Sahoo, D., Ananthakrishna, G.: A phenomenological dislocation transformation model for the mobile fraction in simple systems. J. Phys. D Appl. Phys. 15(8), 1439–1449 (1982)CrossRefGoogle Scholar
  28. 28.
    Cottrell, A.H.: A note on the PorteVin-Le Chatelier effect. Philos. Mag. 44(355), 829–832 (1953)CrossRefGoogle Scholar
  29. 29.
    Bekele, M., Ananthakrishna, G.: High-order amplitude equation for steps on the creep curve. Phys. Rev. E 56(6), 6917–6928 (1997)CrossRefGoogle Scholar
  30. 30.
    Rajesh, S., Ananthakrishna, G.: Relaxation oscillations and negative strain rate sensitivity in the Portevin-Le Chatelier effect. Phys. Rev. E 61(4), 3664–3674 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsZhengzhou UniversityZhengzhouPeople’s Republic of China

Personalised recommendations