Advertisement

Nonlinear Dynamics

, Volume 94, Issue 4, pp 2441–2453 | Cite as

Global stabilization of high-order nonlinear systems under multi-rate sampled-data control

  • Jinping Jia
  • Weisheng Chen
  • Hao Dai
  • Jing Li
Original Paper
  • 140 Downloads

Abstract

This paper studies the sampled-data control problem for a class of high-order nonlinear systems. Based on exact discrete-time equivalent model of the sampled-data system, a multi-rate sampled-data controller with the form of a power series expansion is designed to achieve the global asymptotic stability of the closed-loop system under some assumptions. Approximate solutions of the proposed controller are proved to be effective by a theoretical analysis. The results show that, compared with the emulated control scheme, the approximate controllers allow considering larger sampling periods and enlarge the domain of attraction for a given sampling period. Finally, a simulation example is given to show the effectiveness of the proposed control scheme.

Keywords

Sampled-data control High-order nonlinear systems Multi-rate sampling Global stability 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 61503292, 61673308, 61673014 and 11561060), the Fundamental Research Funds for the Central Universities (No. JB181305), the Innovation Fund of Xidian University and the Science Foundation Project of Tianshui Normal University (No. ZD2017-01).

Compliance with ethical standards

Conflicts of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

References

  1. 1.
    Qian, C.J., Lin, W.: A continuous feedback approach to global strong stabilization of nonlinear systems. IEEE Trans. Autom. Control 46, 1061–1079 (2001)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Sun, Z.Y., Li, T., Yang, S.H.: A unified time-varying feedback approach and its applications in adaptive stabilization of high-order uncertain nonlinear systems. Automatica 70, 249–257 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Lin, W., Qian, C.J.: Adding one power integrator: a tool for global stabilization of high-order lower-triangular systems. Syst. Control Lett. 39, 339–351 (2000)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Lin, W., Qian, C.J.: Robust regulation of a chain of power integrators perturbed by a lower-triangular vector field. Int. J. Robust Nonlinear Control 10, 397–421 (2000)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Celikovsky, S., Aranda-Briaire, E.: Construction nonsmooth stabilization of trilization of triangular systems. Syst. Control Lett. 36, 21–37 (1999)CrossRefGoogle Scholar
  6. 6.
    Coron, J.M., Praly, L.: Adding an integrator for the stabilization problem. Syst. Control Lett. 17, 89–104 (1991)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hermes, H.: Nilpotent and high-order approximations of vector field systems. SIAM Rev. 33, 238–264 (1991)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Tsinias, J.: Partial-state global stabilization for general triangular systems. Syst. Control Lett. 24, 139–145 (1995)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Liu, L., Huang, J.: Global robust output regulation of lower triangular systems with unknown control direction. Automatica 44, 1278–1284 (2008)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Li, W.Q., Jing, Y.W., Zhang, S.Y.: Adaptive state-feedback stabilization for a large class of high-order stochastic nonlinear systems. Automatica 47, 819–828 (2011)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Tian, W., Zhang, C., Qian, C., Li, S.: Global stabilization of inherently non-linear systems using continuously differentiable controllers. Nonlinear Dyn. 77, 739–752 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Wang, H., Zhu, Q.X.: Global stabilization of stochastic nonlinear systems via \(C^1\) and \(C^{\infty }\) controllers. IEEE Trans. Autom. Control 62, 5880–5887 (2017)CrossRefGoogle Scholar
  13. 13.
    Sun, Z.Y., Zhang, X.H., Xie, X.J.: Global continuous output-feedback stabilization for a class of high-order nonlinear systems with multiple time delays. J. Frankl. Inst. 351, 4334–4356 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Lin, W., Qian, C.J.: Adaptive regulation of high-order lower-triangular systems: an adding a power integrator technique. Syst. Control Lett. 39, 353–364 (2000)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Lin, W., Qian, C.J.: Recursive observer design, homogeneous approximation, and nonsmooth output feedback stabilization of nonlinear systems. IEEE Trans. Autom. Control 51, 1457–1471 (2006)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Back, J., Cheong, S.G., Shim, H., Seo, J.H.: Nonsmooth feedback stabilizer for strict-feedback nonlinear systems that may not be linearizable at the origin. Syst. Control Lett. 56, 742–752 (2007)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Xie, X.J., Tian, J.: Adaptive state-feedback stabilization of high-order stochastic systems with nonlinear parameterization. Automatica 45, 126–133 (2009)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Wang, C.L., Lin, Y.: Decentralized adaptive tracking control for a class of interconnected nonlinear time-varying systems. Automatica 54, 16–24 (2015)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Chen, C.C., Qian, C.J., Lin, X.Z., Sun, Z.Y., Liang, Y.W.: Smooth output feedback stabilization for nonlinear systems with time-varying powers. Int. J. Robust Nonlinear Control 27, 5113–5128 (2017)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Fu, J., Ma, R., Chai, T.: Global finite-time stabilization of a class of switched nonlinear systems with the powers of positive odd rational numbers. Automatica 54, 360–373 (2015)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Zha, W.T., Qian, C.J., Zhai, J.Y., Fei, S.M.: Robust control for a class of nonlinear systems with unknown measurement drifts. Automatica 71, 33–37 (2016)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Wu, Y.Q., Gao, F.Z., Zhang, Z.C.: Saturated finite-time stabilization of uncertain nonholonomic systems in feedforward-like form and its application. Nonlinear Dyn. 84, 1609–1622 (2016)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Wang, H., Zhu, Q.X.: Finite-time stabilization of high-order stochastic nonlinear systems in strict-feedback form. Automatica 54, 284–291 (2015)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Xie, X.J., Duan, N., Yu, X.: State-feedback control of high-order stochastic nonlinear systems with SiISS inverse dynamics. IEEE Trans. Autom. Control 56, 1921–2011 (2011)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Zhu, Q.X., Wang, H.: Output feedback stabilization of stochastic feedforward systems with unknown control coefficients and unknown output function. Automatica 87, 166–175 (2018)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Karafyllis, I., Kravaris, C.: Global stability results for systems under sampled-data control. Int. J. Robust Nonlinear Control 19, 1105–1128 (2009)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Du, H.B., Qian, C.J., Li, S.H.: Global stabilization of a class of uncertain upper-triangular systems under sampled-data control. Int. J. Robust Nonlinear Control 23, 620–637 (2013)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Sakthivel, R., Santra, S., Kaviarasan, B., Park, J.H.: Finite-time sampled-data control of permanent magnet synchronous motor systems. Nonlinear Dyn. 86, 2081–2092 (2016)CrossRefGoogle Scholar
  29. 29.
    Xie, X.P., Yue, D., Zhang, H.G., Xue, Y.S.: Control synthesis of discrete-time T–S fuzzy systems via a multi-instant homogenous polynomial approach. IEEE Trans. Cybern. 46, 630–640 (2016)CrossRefGoogle Scholar
  30. 30.
    Abidi, K., Yildiz, Y., Annaswamy, A.: Control of uncertain sampled-data systems: an adaptive posicast control approach. IEEE Trans. Autom. Control 62, 2597–2602 (2017)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Hooshmandi, K., Bayat, F., Jahed-Motlagh, M.R.: Stability analysis and design of nonlinear sampled-data systems under aperiodic samplings. Int. J. Robust Nonlinear Control 28, 2679–2699 (2018)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Rakkiyappan, R., Preethi Latha, V., Zhu, Q.X., Yao, Z.S.: Exponential synchronization of Markovian jumping chaotic neural networks with sampled-data and saturating actuators. Nonlinear Anal. Hybrid Syst. 24, 28–44 (2017)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Fridman, E.: A refined input delay approach to sampled-data control. Automatica 46, 421–427 (2010)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Ramezanifar, A., Mohammadpour, J., Grigoriadis, K.: Sampled-data control of LPV systems using input delay approach. Decis. Control 8267, 6303–6308 (2013)Google Scholar
  35. 35.
    Han, S.K., Jin, B.P., Joo, Y.H.: Sampled-data control of fuzzy systems based on the intelligent digital redesign technique: an input-delay approach. Int. J. Control Autom. Syst. 16, 327–334 (2018)CrossRefGoogle Scholar
  36. 36.
    Syed Ali, M., Gunasekaran, N., Zhu, Q.X.: State estimation of TCS fuzzy delayed neural networks with Markovian jumping parameters using sampled-data control. Fuzzy Sets Syst. 306, 87–104 (2017)CrossRefGoogle Scholar
  37. 37.
    Naghshtabrizi, P., Hespanha, J.P., Teel, A.R.: Exponential stability of impulsive systems with application to uncertain sampled-data systems. Syst. Control Lett. 57, 378–385 (2008)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Goebel, R., Sanfelice, R.G., Teel, A.R.: Hybrid dynamical systems. IEEE Control Syst. 29, 28C93 (2009)Google Scholar
  39. 39.
    Forni, F., Galeani, S., Nešić, D., Zaccarian, L.: Event-triggered transmission for linear control over communication channels. Automatica 50, 490–498 (2013)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Bamieh, B., Pearson Jr., J.: A general framework for linear periodic systems with applications to H sampled-data control. IEEE Trans. Autom. Control 37, 418–435 (1992)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Toivonen, H.T., Sågfors, M.F.: The sampled-data \({{\cal{H}}}^{\infty }\) problem: a unified framework for discretization based methods and Riccati equation solution. Int. J. Control 66, 289–309 (1997)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Dullerud, G.E., Lall, S.: Asynchronous hybrid systems with jumps-analysis and synthesis methods. Syst. Control Lett. 37, 61–69 (1999)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Liu, Y.W., Guo, Q.Y., Wang, Y.H., Zhang, S.T.: Robust stability of sampled-data control systems. In: Chinese Control Conference, Nanjing, China, pp. 28–30 (2014)Google Scholar
  44. 44.
    Heemels, W.P.M.H., Dullerud, G.E., Teel, A.R.: \({{\cal{L}}}_2\)-gain analysis for a class of hybrid systems with applications to reset and event-triggered control: a lifting approach. IEEE Trans. Autom. Control 61, 2766–2781 (2016)CrossRefGoogle Scholar
  45. 45.
    Nešić, D., Teel, A.R., Carnevale, D.: Explicit computation of the sampling period in emulation of controllers for nonlinear sampled-data systems. IEEE Trans. Autom. Control 54, 619–624 (2009)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Omran, H., Hetel, L., Petreczky, M., Richard, J.P., Lamnabhi-Lagarrigue, F.: Stability analysis of some classes of input-affine nonlinear systems with aperiodic sampled-data control. Automatica 70, 266–274 (2016)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Anderson, B.D.O.: Controller design: moving from theory to practice. IEEE Control Syst. 13, 16–25 (1993)CrossRefGoogle Scholar
  48. 48.
    Nešić, D., Teel, A.R.: Stabilization of sampled-data nonlinear systems via backstepping on their Euler approximate model. Automatica 42, 1801–1808 (2006)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Postoyan, R., Ahmed-Ali, T., Lamnabhi-Lagarrigue, F.: Robust backstepping for the Euler approximate model of sampled-data strict-feedback systems. Automatica 45, 2164–2168 (2009)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Monaco, S., Normand-Cyrot, D.: Issues on nonlinear digital systems. Eur. J. Control 7, 160–177 (2001)CrossRefGoogle Scholar
  51. 51.
    Nešić, D., Teel, A.R., Kokotovic, P.V.: Sufficient conditions for stabilization of sampled-data noninear systems via discrete-time approximations. Syst. Control Lett. 38, 259–270 (1999)CrossRefGoogle Scholar
  52. 52.
    Monaco, S., Normand-Cyrot, D., Califano, C.: From chronological calculus to exponential representations of continuous and discrete-time dynamics: a Lie-algebraic approach. IEEE Trans. Autom. Control 52, 2227–2241 (2007)MathSciNetCrossRefGoogle Scholar
  53. 53.
    Nešić, D., Grüne, L.: Lyapunov based continuous-time controller redesign for sampled-data implementation. Automatica 41, 1143–1156 (2005)MathSciNetCrossRefGoogle Scholar
  54. 54.
    Koo, G.B., Jin, B.P., Joo, Y.H.: An improved digital redesign for sampled-data fuzzy control systems: fuzzy Lyapunov function approach. Inf. Sci. 406, 71–86 (2018)Google Scholar
  55. 55.
    Tiefensee, F., Monaco, S., Normand-Cyrot, D.: Lyapunov design under sampling for a synchronous machine. In: European Control Conference, Budapest, Hungary, pp. 2775–2780 (2009)Google Scholar
  56. 56.
    Monaco, S., Normand-Cyrot, D., Tiefensee, F.: Sampled-data stabilization: a PBC approach. IEEE Trans. Autom. Control 56, 907–912 (2011)MathSciNetCrossRefGoogle Scholar
  57. 57.
    Tanasa, V., Monaco, S., Normand-Cyrot, D.: Backstepping control under multi-rate sampling. IEEE Trans. Autom. Control 61, 1208–1222 (2016)MathSciNetCrossRefGoogle Scholar
  58. 58.
    Angeli, D., Sontag, E.D.: Forward completeness, unboundedness observability, and their Lyapunov characterizations. Syst. Control Lett. 38, 209–217 (1999)MathSciNetCrossRefGoogle Scholar
  59. 59.
    Qian, C.J., Lin, W.: Non-Lipschitz continuous stabilizers for nonlinear systems with uncontrollable unstable linearization. Syst. Control Lett. 42, 185–200 (2001)MathSciNetCrossRefGoogle Scholar
  60. 60.
    Grobner, W., Knapp, H.: Contributions to the Method of Lie Series. Bibliographisches Insititut, Leipzig (1967)zbMATHGoogle Scholar
  61. 61.
    Krstic, M., Kanellakopoulos, I., Kokotovic, P.V.: Nonlinear and Adaptive Control Design. Wiley, New York (1995)zbMATHGoogle Scholar
  62. 62.
    Seto, D., Annaswamy, A.M., Bailieul, J.: Adaptive control of noninear systems with a triangular structure. IEEE Trans. Autom. Control 39, 1411–1428 (1994)CrossRefGoogle Scholar
  63. 63.
    Lin, W., Qian, C.J.: Adaptive control of nonlinearly parameterized systems: the smooth feedback case. IEEE Trans. Autom. Control 47, 1249–1266 (2002)MathSciNetCrossRefGoogle Scholar
  64. 64.
    Arapostathis, A., Jakubczyk, B., Lee, H.G., Marcus, S.I., Sontag, E.D.: The effect of sampling on linear equivalence and feedback linearization. Syst. Control Lett. 13, 373–381 (1989)MathSciNetCrossRefGoogle Scholar
  65. 65.
    Nešić, D., Teel, A.R., Sontag, E.D.: Formulas relating \({{{\cal{KL}}}}\) stability estimates of discrete-time and sampled-data nonlinear systems. Syst. Control Lett. 38, 49–60 (1999)CrossRefGoogle Scholar
  66. 66.
    Khalil, H.: Nonlinear System. Prentice Hall, New Jersey (1996)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsXidian UniversityXi’anPeople’s Republic of China
  2. 2.School of Aerospace Science and TechnologyXidian UniversityXi’anPeople’s Republic of China
  3. 3.School of Mathematics and StatisticsTianshui Normal UniversityTianshuiPeople’s Republic of China

Personalised recommendations