Nonlinear Dynamics

, Volume 94, Issue 4, pp 2391–2408 | Cite as

Dynamic analysis of a tethered satellite system for space debris capture

  • Jonghyuk Lim
  • Jintai Chung
Original Paper


Herein we analyze the dynamic behavior of a tethered satellite system for space debris capture, considering the large deformation of a tether. The tethered satellite system is modeled as two point masses and a string, and the equations of motion of the tethered satellite system are derived by using the absolute nodal coordinate formulation. To calculate the net velocity after debris capture, equations are established describing the momentum exchange between the net and the space debris. By using this model, the dynamic responses of the tethered satellite system after debris capture are calculated for the variations of the capture angles and capture velocities of the debris. This allows analysis of the orbital response of the tethered satellite system and the large tensions arising from tether tumbling. Finally, we analyze the effects of varying system parameters of the tethered satellite system and the space debris upon the dynamic responses.


Tethered satellite Space debris capture Nonlinear equations Dynamic behavior Absolute nodal coordinate formulation 



This work was supported by a Grant from the National Research Foundation of Korea (NRF), funded by the Korean government (MEST) (NRF-2018R1D1A1B07050187).

Compliance with ethical standards

Conflict of interest

Jonghyuk Lim and Jintai Chung declare that they have no conflict of interest.


  1. 1.
    Carroll, J.A., Oldson, J.C.: Tethers for small satellite applications. In: AIAA/USU Small Satellite Conference, Logan, Utah (1995)Google Scholar
  2. 2.
    Cosmo, M.L., Lorenzini, E.C.: Tethers in Space Handbook, 3rd edn. Smithsonian Astrophysical Observatory, Cambridge (1997)Google Scholar
  3. 3.
    Chen, Y., Huang, R., Ren, X., He, L., He, Y.: History of the tether concept and tether missions: a review. ISRN Astron. Astrophys. 2013, 7 (2013)CrossRefGoogle Scholar
  4. 4.
    Williams, P., Blanksby, C., Trivailo, P., Fujii, H.A.: In-plane payload capture using tethers. Acta Astron. 57, 772–787 (2005)CrossRefGoogle Scholar
  5. 5.
    Williams, P.: Dynamics and control of spinning tethers for rendezvous in elliptic orbits. J. Vib. Control 12, 771–797 (2006)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Zhai, G., Liang, B., Li, C.: On-orbit capture with flexible tether-net system. Acta Astron. 65, 613–623 (2009)CrossRefGoogle Scholar
  7. 7.
    Wang, D., Huang, P., Cai, J., Meng, Z.: Coordinated control of tethered space robot using mobile tether attachment point in approaching phase. Adv. Sp. Res. 54, 1077–1091 (2014)CrossRefGoogle Scholar
  8. 8.
    Steiner, W., Zemann, J., Steindl, A., Troger, H.: Numerical study of large amplitude oscillations of a two-satellite continuous tether system with a varying length. Acta Astron. 35, 607–621 (1995)CrossRefGoogle Scholar
  9. 9.
    Mankala, K.K., Agrawal, S.K.: Dynamic modeling and simulation of impact in tether net-gripper systems. Multibody Syst. Dyn. 11, 235–250 (2004)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Benvenuto, R., Salvi, S., Lavagna, M.: Dynamics analysis and GNC design of flexible systems for the space debris active removal. Acta Astron. 110, 247–265 (2015)CrossRefGoogle Scholar
  11. 11.
    Huang, P., Zhang, F., Ma, J., Meng, Z., Liu, Z.: Dynamics and configuration control of the maneuvering-net space robot system. Adv. Sp. Res. 55, 1004–1014 (2015)CrossRefGoogle Scholar
  12. 12.
    Liu, H.T., Zhang, Q.B., Yang, L.P., Zhu, Y.W., Zhang, Y.W.: Dynamics of tether-tugging reorbiting with net capture. Sci. China Technol. Sci. 57, 2407–2417 (2014)CrossRefGoogle Scholar
  13. 13.
    Linskens, H.T.K., Mooij, E.: Tether dynamics analysis and guidance and control design for active space-debris removal. J. Guid. Control Dyn. 39, 1232–1243 (2016)CrossRefGoogle Scholar
  14. 14.
    Atashgah, M.A.A., Gazerpour, H., Lavaei, A., Zarei, Y.: An active time-optimal control for space debris deorbiting via geomagnetic field. Celest. Mech. Dyn. Astr. 128, 343–360 (2017)CrossRefGoogle Scholar
  15. 15.
    Qi, R., Misra, A.K., Zuo, Z.: Active debris removal using double-tethered space-tug system. J. Guid. Control Dyn. 40, 722–730 (2017)CrossRefGoogle Scholar
  16. 16.
    Sanchez-Arriaga, G., Chen, X., Lorenzini, E.C.: Optimal design and deorbiting performance of thermionic tethers in geostationary transfer orbits. J. Propuls. Power 33, 425–432 (2017)CrossRefGoogle Scholar
  17. 17.
    Li, G.Q., Zhu, Z.H., Ruel, S., Meguid, S.A.: Multiphysics elastodynamic finite element analysis of space debris deorbit stability and efficiency by electrodynamic tethers. Acta Astron. 137, 320–333 (2017)CrossRefGoogle Scholar
  18. 18.
    Shabana, A.A.: Computer implementation of the absolute nodal coordinate formulation for flexible multibody dynamics. Nonlinear Dyn. 16, 293–306 (1998)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Berzeri, M., Shabana, A.A.: Development of simple models for the elastic forces in the absolute nodal co-ordinate formulation. J. Sound Vib. 235, 539–565 (2000)CrossRefGoogle Scholar
  20. 20.
    Gerstmayr, J., Shabana, A.A.: Analysis of thin beams and cables using the absolute nodal co-ordinate formulation. Nonlinear Dyn. 45, 109–130 (2006)CrossRefGoogle Scholar
  21. 21.
    Yoo, W.S., Lee, J.H., Park, S.J., Sohn, J.H., Dmitrochenko, O., Pogorelov, D.: Large oscillations of a thin cantilever beam physical experiments and simulation using the absolute nodal coordinate formulation. Nonlinear Dyn. 34, 3–29 (2003)CrossRefGoogle Scholar
  22. 22.
    Valverde, J., García-Vallejo, D.: Stability analysis of a substructured model of the rotating beam. Nonlinear Dyn. 55, 355–372 (2009)CrossRefGoogle Scholar
  23. 23.
    Čepon, G., Manin, L., Boltežar, M.: Experimental identification of the contact parameters between a \(V\)-ribbed belt and a pulley. Mech. Mach. Theor. 45, 1424–1433 (2010)CrossRefGoogle Scholar
  24. 24.
    Tang, J.L., Ren, G.X., Zhu, W.D., Ren, H.: Dynamics of variable-length tethers with application to tethered satellite deployment. Commun. Nonlinear Sci. Numer. Simul. 16, 3411–3424 (2011)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Shan, M., Guo, J., Gill, E.: Deployment dynamics of tethered-net for the space debris removal. Acta Astron. 132, 293–302 (2017)CrossRefGoogle Scholar
  26. 26.
    Sun, X., Xu, M., Zhong, R.: Dynamic analysis of the tether transportation system using absolute nodal coordinate formulation. Acta Astron. 139, 266–277 (2017)CrossRefGoogle Scholar
  27. 27.
    Wriggers, P.: Nichtlineare Finite-Element-Methoden. Springer, Berlin (2001)CrossRefGoogle Scholar
  28. 28.
    Dmitrochenko, O., Yoo, W.S., Pogorelov, D.: Helicoseir as shape of a rotating string (II): 3D theory and simulation using ANCF. Multibody Syst. Dyn. 15, 181–200 (2006)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Jasper, L.E.Z., Seubert, C.R., Schaub, H., Valery, T., Yutkin, E.: Tethered tug for large low Earth orbit debris removal. In: AAS/AIAA Astrodynamics Specialists Conference, Charleston, South Carolina, Paper No. AAS 12–252 (2012)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringHanyang UniversityAnsanRepublic of Korea

Personalised recommendations