Advertisement

Nonlinear Dynamics

, Volume 94, Issue 4, pp 2373–2389 | Cite as

Bi-parametric topology of subharmonics of an asymmetric bubble oscillator at high dissipation rate

The exoskeleton, its internal structure and the missing fine substructure
  • Kálmán Klapcsik
  • Roxána Varga
  • Ferenc Hegedűs
Original Paper

Abstract

The subharmonic topology of a nonlinear, asymmetric bubble oscillator (Keller–Miksis equation) in glycerine is investigated in the parameter space of its external excitation (frequency and pressure amplitude). The bi-parametric investigation revealed that the exoskeleton of the topology can be described as the composition of U-shaped subharmonics of periodic orbits. The fine substructure (higher-order ultra-subharmonic resonances) usually appearing via the well-known period n-tupling phenomenon is completely missing due to the high dissipation rate of the viscous liquid. Moreover, a complex internal structure of the subharmonics has been found, which are composed by interconnected bifurcation blocks (in a zig-zag pattern) each describing the skeleton of a shrimp-shaped domain. The employed numerical techniques are the combination of an in-house initial value problem solver written in C++/CUDA C to harness the high processing power of professional graphics cards, and the boundary value problem solver AUTO to compute periodic orbits directly regardless of their stability.

Keywords

Keller–Miksis equation GPU programing AUTO boundary value problem solver Subharmonic topology Bi-parametric bifurcation structure 

Notes

Acknowledgements

This paper was supported by the ÚNKP-17-3-I New National Excellence Program of the Ministry of Human Capacities, by the János Bolyai Research Scholarship of Hungarian Academy of Sciences and by the Higher Education Excellence Program of the Ministry of Human Capacities in the frame of Water science & Disaster Prevention research area of Budapest University of Technology and Economics (BME FIKP-VÍZ).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Strogatz, S.H.: Nonlinear Dynamics and Chaos with Applications to Physics, Biology, Chemistry, and Engineering, 2nd edn. Westview Press, Boulder (2014)zbMATHGoogle Scholar
  2. 2.
    Epstein, I.R., Showalter, K.: Nonlinear chemical dynamics: oscillations, patterns, and chaos. J. Phys. Chem. 100(31), 13132 (1996)Google Scholar
  3. 3.
    Sagues, F., Epstein, I.R.: Nonlinear chemical dynamics. Dalton Trans. 7, 1201 (2003)Google Scholar
  4. 4.
    Roberto, M., da Silva, E.C., Caldas, I.L., Viana, R.L.: Magnetic trapping caused by resonant perturbations in tokamaks with reversed magnetic shear. Phys. Plasmas 11(1), 214 (2004)Google Scholar
  5. 5.
    Ecke, R.E.: Chaos, patterns, coherent structures, and turbulence: reflections on nonlinear science. Chaos 25(9), 097605 (2015)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Parlitz, U., Lauterborn, W.: Superstructure in the bifurcation set of the Duffing equation \(\ddot{x} + d \dot{x} + x + x^3 = f cos(\omega t)\). Phys. Lett. A 107(8), 351 (1985)MathSciNetGoogle Scholar
  7. 7.
    Parlitz, U., Lauterborn, W.: A Resonances and torsion numbers of driven dissipative nonlinear oscillators. Z. Naturforsch. A 41(4), 605 (1986)MathSciNetGoogle Scholar
  8. 8.
    Parlitz, U., Lauterborn, W.: Period-doubling cascades and devil’s staircases of the driven van der Pol oscillator. Phys. Rev. A 36(3), 1428 (1987)Google Scholar
  9. 9.
    Parlitz, U., Scheffczyk, C., Kurz, T., Lauterborn, W.: On modeling driven oscillators by maps. Int. J. Bifurcat. Chaos 1(1), 261 (1991)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Kozłowski, J., Parlitz, U., Lauterborn, W.: Bifurcation analysis of two coupled periodically driven Duffing oscillators. Phys. Rev. E 51(3), 1861 (1995)Google Scholar
  11. 11.
    Feigenbaum, M.J.: Quantitative universality for a class of nonlinear transformations. J. Stat. Phys. 19(1), 25 (1978)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Grebogi, C., Ott, E., Yorke, J.A.: Crises, sudden changes in chaotic attractors, and transient chaos. Physica D 7(1–3), 181 (1983)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Goswami, B.K.: Self-similarity in the bifurcation structure involving period tripling, and a suggested generalization to period n-tupling. Phys. Lett. A 245(1–2), 97 (1998)Google Scholar
  14. 14.
    Gilmore, R.: Topological analysis of chaotic dynamical systems. Rev. Mod. Phys. 70(4), 1455 (1998)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Rocha, R., Medrano-T, R.O.: Stability analysis and mapping of multiple dynamics of Chua’s circuit in full four-parameter spaces. Int. J. Bifurcat. Chaos 25(13), 1530037 (2015)MathSciNetzbMATHGoogle Scholar
  16. 16.
    da Costa, D.R., Hansen, M., Guarise, G., Medrano-T, R.O., Leonel, E.D.: The role of extreme orbits in the global organization of periodic regions in parameter space for one dimensional maps. Phys. Lett. A 380(18), 1610 (2016)MathSciNetGoogle Scholar
  17. 17.
    Prants, F.G., Rech, P.C.: Complex dynamics of a three-dimensional continuous-time autonomous system. Math. Comput. Simul. 136, 132 (2017)MathSciNetGoogle Scholar
  18. 18.
    Field, R.J., Gallas, J.A., Schuldberg, D.: Periodic and chaotic psychological stress variations as predicted by a social support buffered response mode. Commun. Nonlinear. Sci. Numer. Simul. 49, 135 (2017)Google Scholar
  19. 19.
    Doedel, E.J., Oldeman, B.E., Champneys, A.R., Dercole, F., Fairgrieve, T.F., Kuznetsov, Y.A., Paffenroth, R., Sandstede, B., Wang, X., Zhang, C.: AUTO-07P: Continuation and Bifurcation Software for Ordinary Differential Equations. Concordia University, Montreal (2012)Google Scholar
  20. 20.
    Kurz, T., Lauterborn, W.: Bifurcation structure of the Toda oscillator. Phys. Rev. A 37, 1029 (1988)MathSciNetGoogle Scholar
  21. 21.
    Knop, W., Lauterborn, W.: Bifurcation structure of the classical Morse oscillator. J. Chem. Phys. 93(6), 3950 (1990)MathSciNetGoogle Scholar
  22. 22.
    Scheffczyk, C., Parlitz, U., Kurz, T., Knop, W., Lauterborn, W.: Comparison of bifurcation structures of driven dissipative nonlinear oscillators. Phys. Rev. A 43(12), 6495 (1991)MathSciNetGoogle Scholar
  23. 23.
    Parlitz, U.: Common dynamical features of periodically driven strictly dissipative oscillators. Int. J. Bifurcat. Chaos 3(3), 703 (1993)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Parlitz, U., Englisch, V., Scheffczyk, C., Lauterborn, W.: Bifurcation structure of bubble oscillators. J. Acoust. Soc. Am. 88(2), 1061 (1990)MathSciNetGoogle Scholar
  25. 25.
    Gilmore, R., McCallum, J.W.L.: Structure in the bifurcation diagram of the Duffing oscillator. Phys. Rev. E 51, 935 (1995)MathSciNetGoogle Scholar
  26. 26.
    Goldberg, L., Tresser, C.: Rotation orbits and the Farey tree. Ergod. Theory Dyn. Syst. 16(5), 1011 (1996)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Englisch, V., Parlitz, U., Lauterborn, W.: Comparison of winding-number sequences for symmetric and asymmetric oscillatory systems. Phys. Rev. E 92(2), 022907 (2015)MathSciNetGoogle Scholar
  28. 28.
    Bonatto, C., Gallas, J.A.C.: Accumulation horizons and period adding in optically injected semiconductor lasers. Phys. Rev. E 75(5), 055204 (2007)Google Scholar
  29. 29.
    Bonatto, C., Gallas, J.A.C.: Accumulation boundaries: codimension-two accumulation of accumulations in phase diagrams of semiconductor lasers, electric circuits, atmospheric and chemical oscillators. Philos. T. Roy. Soc. A 366(1865), 505 (2008)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Bonatto, C., Gallas, J.A.C., Ueda, Y.: Chaotic phase similarities and recurrences in a damped-driven Duffing oscillator. Phys. Rev. E 77(2), 026217 (2008)Google Scholar
  31. 31.
    Bonatto, C., Gallas, J.A.C.: Periodicity hub and nested spirals in the phase diagram of a simple resistive circuit. Phys. Rev. Lett. 101(5), 054101 (2008)Google Scholar
  32. 32.
    Lauterborn, W., Kurz, T., Mettin, R., Koch, P., Kröninger, D., Schanz, D.: Acoustic cavitation and bubble dynamics. Arch. Acoust. 33(4), 609 (2008)Google Scholar
  33. 33.
    Freire, J.G., Field, R.J., Gallas, J.A.C.: Relative abundance and structure of chaotic behavior: the nonpolynomial Belousov–Zhabotinsky reaction kinetics. J. Chem. Phys. 131(4), 044105 (2009)Google Scholar
  34. 34.
    Medeiros, E.S., Medrano-T, R.O., Caldas, I.L., de Souza, S.L.T.: Torsion-adding and asymptotic winding number for periodic window sequences. Phys. Lett. A 377(8), 628 (2013)MathSciNetGoogle Scholar
  35. 35.
    de Souza, S.L.T., Lima, A.A., Caldas, I.L., Medrano-T, R.O., Guimara̋es-Filho, Z.O.: Self-similarities of periodic structures for a discrete model of a two-gene system. Phys. Lett. A 376(15), 1290 (2012)zbMATHGoogle Scholar
  36. 36.
    Celestino, A., Manchein, C., Albuquerque, H.A., Beims, M.W.: Stable structures in parameter space and optimal ratchet transport. Commun. Nonlinear Sci. Numer. Simul. 19(1), 139 (2014)Google Scholar
  37. 37.
    Francke, R.E., Pöschel, T., Gallas, J.A.C.: Zig-zag networks of self-excited periodic oscillations in a tunnel diode and a fiber-ring laser. Phys. Rev. E 87(4), 042907 (2013)Google Scholar
  38. 38.
    Niemeyer, K.E., Sung, C.J.: Accelerating moderately stiff chemical kinetics in reactive-flow simulations using GPUs. J. Comput. Phys. 256, 854 (2014)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Lauterborn, W., Parlitz, U.: Methods of chaos physics and their application to acoustics. J. Acoust. Soc. Am. 84(6), 1975 (1988)MathSciNetGoogle Scholar
  40. 40.
    Englisch, V., Lauterborn, W.: Regular window structure of a double-well Duffing oscillator. Phys. Rev. A 44(2), 916 (1991)MathSciNetGoogle Scholar
  41. 41.
    Wang, C.S., Kao, Y.H., Huang, J.C., Gou, Y.S.: Potential dependence of the bifurcation structure in generalized Duffing oscillators. Phys. Rev. A 45(6), 3471 (1992)Google Scholar
  42. 42.
    Kim, S.Y.: Bifurcation structure of the double-well Duffing oscillator. Int. J. Mod. Phys. B 14(17), 1801 (2000)Google Scholar
  43. 43.
    Hegedűs, F., Hős, C., Kullmann, L.: Stable period 1, 2 and 3 structures of the harmonically excited Rayleigh–Plesset equation applying low ambient pressure. IMA J. Appl. Math. 78(6), 1179 (2013)MathSciNetzbMATHGoogle Scholar
  44. 44.
    Hegedűs, F.: Stable bubble oscillations beyond Blake’s critical threshold. Ultrasonics 54(4), 1113 (2014)Google Scholar
  45. 45.
    Hegedűs, F.: Topological analysis of the periodic structures in a harmonically driven bubble oscillator near Blake’s critical threshold: infinite sequence of two-sided Farey ordering trees. Phys. Lett. A 380(9–10), 1012 (2016)Google Scholar
  46. 46.
    Fujiwara, T., Shima, A.: Nonlinear oscillations of bubbles in compressible hydraulic oils. J. Acoust. Soc. Am. 68(5), 1502 (1980)zbMATHGoogle Scholar
  47. 47.
    Klapcsik, K., Hegedűs, F.: The effect of high viscosity on the evolution of the bifurcation set of a periodically excited gas bubble. Chaos Solitons Fract. 104(17), 198 (2017)Google Scholar
  48. 48.
    Pisarchik, A.N., Feudel, U.: Control of multistability. Phys. Rep. 540(4), 167 (2014)MathSciNetzbMATHGoogle Scholar
  49. 49.
    Prosperetti, A., Lezzi, A.: Bubble dynamics in a compressible liquid. Part 1. First-order theory. J. Fluid Mech. 168, 457 (1986)zbMATHGoogle Scholar
  50. 50.
    Brennen, C.E.: Cavitation and Bubble Dynamics. Oxford University Press, New York (1995)zbMATHGoogle Scholar
  51. 51.
    Lauterborn, W., Kurz, T.: Physics of bubble oscillations. Rep. Prog. Phys. 73(10), 106501 (2010)Google Scholar
  52. 52.
    Zhang, Y., Du, X., Xian, H., Wu, Y.: Instability of interfaces of gas bubbles in liquids under acoustic excitation with dual frequency. Ultrason. Sonochem. 23, 16 (2015)Google Scholar
  53. 53.
    Zhang, Y., Billson, D., Li, S.: Influences of pressure amplitudes and frequencies of dual-frequency acoustic excitation on the mass transfer across interfaces of gas bubbles. Int. J. Heat Mass Transf. 66, 16 (2015)Google Scholar
  54. 54.
    Zhang, Y., Li, S.: Acoustical scattering cross section of gas bubbles under dual-frequency acoustic excitation. Ultrason. Sonochem. 26, 437 (2015)Google Scholar
  55. 55.
    Zhang, Y., Zhang, Y., Li, S.: The secondary Bjerknes force between two gas bubbles under dual-frequency acoustic excitation. Ultrason. Sonochem. 29, 129 (2016)Google Scholar
  56. 56.
    Zhang, Y., Zhang, Y., Li, S.: Combination and simultaneous resonances of gas bubbles oscillating in liquids under dual-frequency acoustic excitation. Ultrason. Sonochem. 35, 431 (2017)Google Scholar
  57. 57.
    Prosperetti, A.: Nonlinear oscillations of gas bubbles in liquids: steady-state solutions. J. Acoust. Soc. Am. 56(3), 878 (1974)Google Scholar
  58. 58.
    Prosperetti, A.: Nonlinear oscillations of gas bubbles in liquids. Transient solutions and the connection between subharmonic signal and cavitation. J. Acoust. Soc. Am. 57(4), 810 (1975)Google Scholar
  59. 59.
    Esche, R.: Untersuchung der Schwingungskavitation in Flüssigkeiten. Acta Acust. United Acust. 2(6), 208 (1952)Google Scholar
  60. 60.
    Lauterborn, W., Cramer, E.: Subharmonic route to chaos observed in acoustics. Phys. Rev. Lett. 47(20), 1445 (1981)Google Scholar
  61. 61.
    Lauterborn, W., Koch, A.: Holographic observation of period-doubled and chaotic bubble oscillations in acoustic cavitation. Phys. Rev. A 35(4), 1974 (1987)Google Scholar
  62. 62.
    Behnia, S., Mobadersani, F., Yahyavi, M., Rezavand, A.: Chaotic behavior of gas bubble in non-Newtonian fluid: a numerical study. Nonlinear Dyn. 74(3), 559 (2013)MathSciNetGoogle Scholar
  63. 63.
    Behnia, S., Sojahrood, A.J., Soltanpoor, W., Jahanbakhsh, O.: Nonlinear transitions of a spherical cavitation bubble. Chaos Solitons Fract. 41(2), 818 (2009)Google Scholar
  64. 64.
    Behnia, S., Sojahrood, A.J., Soltanpoor, W., Jahanbakhsh, O.: Suppressing chaotic oscillations of a spherical cavitation bubble through applying a periodic perturbation. Ultrason. Sonochem. 16(4), 502 (2009)Google Scholar
  65. 65.
    Behnia, S., Sojahrood, A.J., Soltanpoor, W., Sarkhosh, L.: Towards classification of the bifurcation structure of a spherical cavitation bubble. Ultrasonics 49(8), 605 (2009)Google Scholar
  66. 66.
    Behnia, S., Zahir, H., Yahyavi, M., Barzegar, A., Mobadersani, F.: Observations on the dynamics of bubble cluster in an ultrasonic field. Nonlinear Dyn. 72(3), 561 (2013)MathSciNetGoogle Scholar
  67. 67.
    Hegedűs, F., Koch, S., Garen, W., Pandula, Z., Paál, G., Kullmann, L., Teubner, U.: The effect of high viscosity on compressible and incompressible Rayleigh–Plesset-type bubble models. Int. J. Heat Fluid Flow 42, 200 (2013)Google Scholar
  68. 68.
    Hegedűs, F., Kullmann, L.: Basins of attraction in a harmonically excited spherical bubble model. Period. Polytech. Mech. Eng. 56(2), 125 (2012)Google Scholar
  69. 69.
    Lauterborn, W.: Numerical investigation of nonlinear oscillations of gas bubbles in liquids. J. Acoust. Soc. Am. 59(2), 283 (1976)MathSciNetGoogle Scholar
  70. 70.
    Varga, R., Paál, G.: Numerical investigation of the strength of collapse of a harmonically excited bubble. Chaos Solitons Fract. 76, 56 (2015)MathSciNetGoogle Scholar
  71. 71.
    Keller, J.B., Miksis, M.: Bubble oscillations of large amplitude. J. Acoust. Soc. Am. 68(2), 628 (1980)zbMATHGoogle Scholar
  72. 72.
    Haynes, W.M.: CRC Handbook of Chemistry and Physics, 95th edn. CRC Press, Boca Raton (2015). (Internet Version) Google Scholar
  73. 73.
    Hegedűs, F., Klapcsik, K.: The effect of high viscosity on the collapse-like chaotic and regular periodic oscillations of a harmonically excited gas bubble. Ultrason. Sonochem. 27, 153 (2015)Google Scholar
  74. 74.
    Fyrillas, M.M., Szeri, A.J.: Dissolution or growth of soluble spherical oscillating bubbles. J. Fluid Mech. 277, 381 (1994)zbMATHGoogle Scholar
  75. 75.
    Hős, C.J., Champneys, A.R., Paul, K., McNeely, M.: Dynamic behaviour of direct spring loaded pressure relief valves in gas service: II reduced order modelling. J. Loss Prevent. Proc. 36, 1 (2015)Google Scholar
  76. 76.
    Medeiros, E.S., de Souza, S.L.T., Medrano-T, R.O., Caldas, I.L.: Periodic window arising in the parameter space of an impact oscillator. Phys. Lett. A 374(26), 2628 (2010)zbMATHGoogle Scholar
  77. 77.
    Medeiros, E.S., de Souza, S.L.T., Medrano-T, R.O., Caldas, I.L.: Replicate periodic windows in the parameter space of driven oscillators. Chaos Solitons Fract. 44(11), 982 (2011)Google Scholar
  78. 78.
    Brison, O.J., Gallas, J.A.: What is the effective impact of the explosive orbital growth in discrete-time one-dimensional polynomial dynamical systems? Physica A 410, 313 (2014)MathSciNetzbMATHGoogle Scholar
  79. 79.
    Gallas, J.A.C.: The structure of infinite periodic and chaotic hub cascades in phase diagrams of simple autonomous flows. Int. J. Bifurcat. Chaos 20(2), 197 (2010)MathSciNetzbMATHGoogle Scholar
  80. 80.
    Freire, J.G., Gallas, J.A.C.: Non-Shilnikov cascades of spikes and hubs in a semiconductor laser with optoelectronic feedback. Phys. Rev. E 82(3), 037202 (2010)Google Scholar
  81. 81.
    Freire, J.G., Gallas, J.A.: Cyclic organization of stable periodic and chaotic pulsations in Hartley’s oscillator. Chaos Solitons Fract. 59(7), 129 (2014)Google Scholar
  82. 82.
    Hegedűs, F., Werner, L., Parlitz, U., Mettin, R.: Non-feedback technique to directly control multistability in nonlinear oscillators by dual-frequency driving. Nonlinear Dyn. (2018).  https://doi.org/10.1007/s11071-018-4358-z CrossRefGoogle Scholar
  83. 83.
    Lu, X., Prosperetti, A., Toegel, R., Lohse, D.: Harmonic enhancement of single-bubble sonoluminescence. Phys. Rev. E 67, 056310 (2003)Google Scholar
  84. 84.
    Parlitz, U., Junge, L.: Synchronization of chaotic systems. In: 1999 European control conference (ECC), pp. 4637–4642 (1999)Google Scholar
  85. 85.
    Goswami, B.K.: Newhouse sinks in the self-similar bifurcation structure. Phys. Rev. E 62, 2068 (2000)Google Scholar
  86. 86.
    Goswami, B.K., Basu, S.: Self-similar organization of Gavrilov–Silnikov–Newhouse sinks. Phys. Rev. E 65, 036210 (2002)MathSciNetGoogle Scholar
  87. 87.
    Goswami, B.K., Basu, S.: Transforming complex multistability to controlled monostability. Phys. Rev. E 66, 026214 (2002)Google Scholar
  88. 88.
    Goswami, B.K.: Multiple attractors in the self-similar bifurcation-structure. Riv. Nuovo Cimento 28, 115 (2005)Google Scholar
  89. 89.
    Sojahrood, A.J., Kolios, M.C.: Classification of the nonlinear dynamics and bifurcation structure of ultrasound contrast agents excited at higher multiples of their resonance frequency. Phys. Lett. A 376(33), 2222 (2012)Google Scholar
  90. 90.
    Sojahrood, A.J., Falou, O., Earl, R., Karshafian, R., Kolios, M.C.: Influence of the pressure-dependent resonance frequency on the bifurcation structure and backscattered pressure of ultrasound contrast agents: a numerical investigation. Nonlinear Dyn. 80(1–2), 889 (2015)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Kálmán Klapcsik
    • 1
  • Roxána Varga
    • 1
  • Ferenc Hegedűs
    • 1
  1. 1.Department of Hydrodynamic Systems, Faculty of Mechanical EngineeringBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations