Nonlinear Dynamics

, Volume 94, Issue 4, pp 2363–2371 | Cite as

Optical vortices in the Ginzburg–Landau equation with cubic–quintic nonlinearity

  • Zhenkun Wu
  • Zhiping WangEmail author
Original Paper


In a dissipative system with cubic–quintic nonlinearity, the curious evolution of optical vortex beams characterized by different topological charges (TCs) is simulated numerically and presented their evolution profiles. We find that new vortices will be induced during propagation, and the behavior of vortices, as affected by the TC and the number of beads of the incident beam, as well as its size, is also discussed. Common rules associated with the initial conditions coming from various incident beams are developed to determine the number of induced vortices and the corresponding rotation direction. Attributed to the nonlinearity, during propagation we see the beams slowly expand to induce new vortices, which commonly appear in oppositely charged pairs, while the net topological charge of the vortex is conserved. Our results not only deepen the understanding of optical vortices, but also widen their potential applications.


Optical vortices Ginzburg–Landau equation Cubic–quintic nonlinearity 



This work was supported by the National Natural Science Foundation of China (NNSFC) (11674002, 11747046) and China Postdoctoral Science Foundation (CPSF) (2017M620300). Support from the 17A140003 Project of Henan Province Key University Science Research Fund is also acknowledged. The authors thank the reviewers’ illuminating comments to improve the article.


  1. 1.
    Nye, J.F., Berry, M.V.: Dislocations in wave trains. Proc. R. Soc. Lond. Ser. A 336, 165–190 (1974)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Basistiy, I.V., Soskin, M.S., Vasnetsov, M.V.: Optical wavefront dislocations and their properties. Opt. Commun. 119, 604–612 (1995)CrossRefGoogle Scholar
  3. 3.
    Zhang, Y.Q., Belić, M., Wu, Z.K., Yuan, C.Z., Wang, R.M., Lu, K.Q., Zhang, Y.P.: Multicharged optical vortices induced in a dissipative atomic vapor system. Phys. Rev. A 88, 013847 (2001)CrossRefGoogle Scholar
  4. 4.
    Skupin, S., Saffman, M., Królikowski, W.: Nonlocal stabilization of nonlinear beams in a self-focusing atomic vapor. Phys. Rev. Lett. 98, 263902 (2007)CrossRefGoogle Scholar
  5. 5.
    Molina-Terriza, G., Torner, L.: Multicharged vortex evolution in seeded second-harmonic generation. J. Opt. Soc. Am. B 17, 1197–1204 (2000)CrossRefGoogle Scholar
  6. 6.
    Lederer, F., Stegeman, G.I., Christodoulides, D.N., Assanto, G., Segev, M., Silberberg, Y.: Discrete solitons in optics. Phys. Rep. 463, 1–126 (2008)CrossRefGoogle Scholar
  7. 7.
    Theocharis, G., Frantzeskakis, D.J., Kevrekidis, P.G., Malomed, B.A., Kivshar, Y.S.: Ring dark solitons and vortex necklaces in Bose–Einstein condensates. Phys. Rev. Lett. 90, 120403 (2003)CrossRefGoogle Scholar
  8. 8.
    Mihalache, D., Mazilu, D., Lederer, F., Kartashov, Y.V., Crasovan, L.-C., Torner, L., Malomed, B.A.: Stable vortex tori in the three-dimensional cubic-quintic Ginzburg–Landau equation. Phys. Rev. Lett. 97, 073904 (2006)CrossRefGoogle Scholar
  9. 9.
    Paterson, L., MacDonald, M.P., Arlt, J., Sibbett, W., Bryant, P.E., Dholakia, K.: Controlled rotation of optically trapped microscopic particles. Science 292, 912–914 (2001)CrossRefGoogle Scholar
  10. 10.
    Leach, J., Jack, B., Romero, J., et al.: Quantum correlations in optical angle-orbital angular momentum variables. Science 329, 662–665 (2010)CrossRefGoogle Scholar
  11. 11.
    Dholakia, K., Čižmár, T.: Shaping the future of manipulation. Nat. Photon. 5, 335–342 (2011)CrossRefGoogle Scholar
  12. 12.
    Dennis, M.R., King, R.P., Jack, B., O’Holleran, K., Padgett, M.J.: Isolated optical vortex knots. Nat. Phys. 6, 118–121 (2010)CrossRefGoogle Scholar
  13. 13.
    Padgett, M., Bowman, R.: Tweezers with a twist. Nat. Photon. 5, 343–348 (2011)CrossRefGoogle Scholar
  14. 14.
    Bernet, S., Jesacher, A., Fűrhapter, S., Maurer, C., Ritsch-Marte, M.: Quantitative imaging of complex samples by spiral phase contrast microscopy. Opt. Express. 14, 3792–3805 (2006)CrossRefGoogle Scholar
  15. 15.
    Chen, Z., Mitchell, M., Segev, M., Coskun, T.H., Christodoulides, D.H.: Self-trapping of dark incoherent light beams. Science 280, 889 (1998)CrossRefGoogle Scholar
  16. 16.
    Piekara, A.H., Moore, J.S., Feld, M.S.: Analysis of self-trapping using the wave equation with high-order nonlinear electric permittivity. Phys. Rev. A 9, 1403 (1974)CrossRefGoogle Scholar
  17. 17.
    Edmundson, D.E., Enns, R.H.: Particlelike nature of colliding three-dimensional optical solitons. Phys. Rev. A 51, 2491 (1995)CrossRefGoogle Scholar
  18. 18.
    Zhou, Q., Liu, L., Liu, Y.X., Yu, H., Yao, P., Wei, C., Zhang, H.J.: Exact optical solitons in metamaterials with cubic-quintic nonlinearity and third-order dispersion. Nonlinear Dyn. 80, 1365–1371 (2015)CrossRefGoogle Scholar
  19. 19.
    Chang, W., Soto-Crespo, J.M., Vouzas, P., Akhmediev, N.: Extreme soliton pulsations in dissipative systems. Phys. Rev. E 92, 022926 (2015)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Soto-Crespo, J.M., Akhmediev, N., Ankiewicz, A.: Pulsating, creeping, and erupting solitons in dissipative systems. Phys. Rev. Lett. 85, 2937 (2000)CrossRefGoogle Scholar
  21. 21.
    Liu, W.J., Yu, W.T., Yang, C.Y., Liu, M.L., Zhang, Y.J., Lei, M.: Analytic solutions for the generalized complex Ginzburg–Landau equation in fiber lasers. Nonlinear Dyn. 89, 2933–2939 (2017)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Wang, Y.Y., Chen, L., Dai, C.Q., Zheng, J., Fan, Y.: Exact vector multipole and vortex solitons in the media with spatially modulated cubic-quintic nonlinearity. Nonlinear Dyn. 90, 1269–1275 (2017)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Chen, Y.X.: Sech-type and Gaussian-type light bullet solutions to the generalized (3 + 1)-dimensional cubic-quintic Schröinger equation in PT-symmetric potentials. Nonlinear Dyn. 79, 427–436 (2015)CrossRefGoogle Scholar
  24. 24.
    Gutiérrez, P., Escaff, D., Pérez-Oyarzún, S., Descalzi, O.: Moving breathing pulses in the one-dimensional complex cubic-quintic Ginzburg–Landau equation. Phys. Rev. E 80, 037202 (2009)CrossRefGoogle Scholar
  25. 25.
    Chen, R.P., Dai, C.Q.: Vortex solitons of the (3 + 1)-dimensional spatially modulated cubic-quintic nonlinear Schrödinger equation with the transverse modulation. Nonlinear Dyn. 90, 1563–1570 (2018)CrossRefGoogle Scholar
  26. 26.
    Soljačić, M., Sears, S., Segev, M.: Self-trapping of “Necklace” beams in self-focusing Kerr media. Phys. Rev. Lett. 81, 4851 (1998)CrossRefGoogle Scholar
  27. 27.
    He, Y.J., Malomed, B.A., Wang, H.Z.: Fusion of necklace-ring patterns into vortex and fundamental solitons in dissipative media. Opt. Express. 15, 17502–17508 (2007)CrossRefGoogle Scholar
  28. 28.
    Rosanov, N.N.: Spatial Hysteresis and Optical Patterns. Springer, Berlin (2002)CrossRefGoogle Scholar
  29. 29.
    Smektala, F., Quemard, C., Couderc, V., Barthelemy, A.: Non-linear optical properties of chalcogenide glasses measured by Z-scan. J. Non Cryst. Solids. 274, 232–237 (2000)CrossRefGoogle Scholar
  30. 30.
    Boudebs, G., Cherukulappurath, S., Leblond, H., Troles, J., Smektala, F., Sanchez, F.: Experimental and theoretical study of higher-order nonlinearities in chalcogenide glasses. Opt. Commun. 219, 427–433 (2003)CrossRefGoogle Scholar
  31. 31.
    Zhan, C., Zhang, D., Zhu, D., Wang, D., Li, Y., Li, D., Lu, Z., Zhao, L., Nie, Y.: Third- and fifth-order optical nonlinearities in a new stilbazolium derivative. J. Opt. Soc. Am. B 19, 369–375 (2002)CrossRefGoogle Scholar
  32. 32.
    Rosanov, N.N., Fedorov, S.V., Shatsev, A.N.: Curvilinear motion of multivortex laser–soliton complexes with strong and weak coupling. Phys. Rev. Lett. 95, 053903 (2005)CrossRefGoogle Scholar
  33. 33.
    Fedorov, S.V., Rosanov, N.N., Shatsev, A.N.: Two-dimensional solitons in B-class lasers with saturable absorption. Opt. Spectra 102, 449–455 (2007)CrossRefGoogle Scholar
  34. 34.
    Zhang, Y.Q., Skupin, S., Maucher, F., Pour, A.G., Lu, K.Q., Królikowski, W.: Azimuthons in weakly nonlinear waveguides of different symmetries. Opt. Express. 18, 27846–27857 (2010)CrossRefGoogle Scholar
  35. 35.
    Buccoliero, D., Desyatnikov, A.S., Krolikowski, W., Kivshar, Y.S.: Laguerre and hermite soliton clusters in nonlocal nonlinear media. Phys. Rev. Lett. 98, 053901 (2007)CrossRefGoogle Scholar
  36. 36.
    Wu, Z.K., Wang, Z.P., Guo, H., Wang, W., Gu, Y.Z.: Self-accelerating Airy–Laguerre–Gaussian light bullets in a two-dimensional strongly nonlocal nonlinear medium. Opt. Express 25, 30468–30478 (2017)CrossRefGoogle Scholar
  37. 37.
    Muslu, G.M., Erbay, H.A.: Higher-order split-step Fourier schemes for the generalized nonlinear Schrödinger equation. Math. Comput. Simul. 67, 581–595 (2005)CrossRefGoogle Scholar
  38. 38.
    Xu, X.M., Taha, T.: Parallel split-step Fourier methods for nonlinear Schrödinger-type equations. J. Math. Model. Algorithms 2, 185–201 (2003)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Michinel, H., Paz-Alonso, M.J., Pérez-García, V.M.: Turning light into a liquid via atomic coherence. Phys. Rev. Lett. 96, 023903 (2006)CrossRefGoogle Scholar
  40. 40.
    Wu, Z.K., Zhang, Y.Q., Yuan, C.Z., Wen, F., Zheng, H.B., Zhang, Y.P., Xiao, M.: Cubic-quintic condensate solitons in four-wave mixing. Phys. Rev. A 88, 063828 (2013)CrossRefGoogle Scholar
  41. 41.
    Wen, F., Ye, H.P., Zhang, X., Wang, W., Li, S.K., Wang, H.X., Zhang, Y.P., Qiu, C.W.: Optically induced atomic lattice with tunable near-field and far-field diffraction patterns. Photon. Res. 5, 676–678 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Institute of nano/photon materials and application, School of Physics and ElectronicsHenan UniversityKaifengPeople’s Republic of China
  2. 2.Key Laboratory for Opto-Electronic Information Acquisition and Manipulation of Ministry of EducationAnhui UniversityHefeiPeople’s Republic of China

Personalised recommendations