Advertisement

Nonlinear Dynamics

, Volume 94, Issue 4, pp 2327–2334 | Cite as

Families of nonsingular soliton solutions of a nonlocal Schrödinger–Boussinesq equation

  • Ying Shi
  • Yongshuai Zhang
  • Shuwei Xu
Original Paper
  • 137 Downloads

Abstract

Nonlocal nonlinear evolution equations with self-induced parity–time symmetric potential have received intensive attention, due to their good applications in nonlinear optics. A nonlocal Schrödinger–Boussinesq equation is proposed in this paper. By using the Hirota bilinear method and the Kadomtsev–Petviashvili hierarchy reduction method, explicit soliton solution with the nonzero boundary condition is succinctly constructed in terms of determinant. Typical dynamics and asymptotic behaviours of three types of two-soliton solutions are discussed in detail.

Keywords

Nonlocal Schrödinger–Boussinesq equation Soliton Bilinear method KP hierarchy reduction 

Notes

Acknowledgements

This work is supported by the NSF of China under Grant Nos. 11501510 and 11601187.

Compliance with ethical standards

Conflict statement

We declare we have no conflict of interests.

References

  1. 1.
    Ablowitz, M.J., Musslimani, Z.: Integrable nonlocal nonlinear Schrödinger equation. Phys. Rev. Lett. 110, 064105 (2013)CrossRefGoogle Scholar
  2. 2.
    Ablowitz, M.J., Luo, X.D., Musslimani, Z.H.: Inverse scattering transform for the nonlocal nonlinear Schrödinger equation with nonzero boundary conditions. J. Math. Phys. 59, 011501 (2018)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Yang, J.K.: General N-solitons and their dynamics in several nonlocal nonlinear Schrödinger equations. arXiv:1712.01181 (2017)
  4. 4.
    Li, M., Xu, T.: Dark and antidark soliton interactions in the nonlocal nonlinear Schrödinger equation with the self-induced parity–time-symmetric potential. Phys. Rev. E 91, 033202 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Wen, X., Yan, Z., Yang, Y.: Dynamics of higher-order rational solitons for the nonlocal nonlinear Schrödinger equation with self-induced parity–time-symmetric potential. Chaos 26, 063123 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Yang, B., Yang, J.K.: General rogue waves in the nonlocal PT-symmetric nonlinear Schrödinger equation. arXiv: 1711.05930 (2017)
  7. 7.
    Zhang, Y., Qiu, D., Cheng, Y., He, J.: Rational solution of the nonlocal nonlinear Schrödinger equation and its application in optics. Rom. J. Phys. 62, 108 (2017)Google Scholar
  8. 8.
    Chen, S., Grelu, P., Mihalache, D., Baronio, F.: Families of rational soliton solutions of the Kadomtsev–Petviashvili equation. Rom. Rep. Phys. 68, 1407 (2016)Google Scholar
  9. 9.
    Xu, Z., Chow, K.: Breathers and rogue waves for a third order nonlocal partial differential equation by a bilinear transformation. Appl. Math. Lett. 56, 72 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Rao, J.G., Cheng, Y., He, J.S.: Rational and semirational solutions of the nonlocal Davey–Stewartson equation. Stud. Appl. Math. 139, 568 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Feng, B.F., Luo, X.D., Ablowitz, M.J., Musslimani, Z.H.: General soliton solutions to a nonlocal nonlinear Schrödinger equation with zero and nonzero boundary conditions. arXiv:1712.09172 (2017)
  12. 12.
    Mihalache, D.: Multidimensional localized structures in optical and matter-wave media: a topical survey of recent literature. Rom. Rep. Phys. 69, 403 (2017)Google Scholar
  13. 13.
    Song, C.Q., Xiao, D.M., Zhu, Z.N.: Reverse space–time nonlocal Sasa–Satsuma equation and its solutions. J. Phys. Soc. Jpn. 86, 054001 (2017)CrossRefGoogle Scholar
  14. 14.
    Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal nonlinear equations. Stud. Appl. Math. 139, 7 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Fokas, A.S.: Integrable multidimensional versions of the nonlocal nonlinear Schrödinger equation. Nonlinearity 29, 319 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Wu, Z., He, J.: New hierarchies of derivative nonlinear Schrödinger-type equation. Rom. Rep. Phys. 68, 79 (2016)Google Scholar
  17. 17.
    Zhou, Z.X.: Darboux transformations and global solutions for a nonloal derivative nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 62, 480 (2018)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Hase, Y., Satsuma, J.: An N-soliton solutions for the nonlinear Schrödinger equation coupled to the Boussinesq equation. J. Phys. Soc. Jpn. 57, 679 (1988)CrossRefGoogle Scholar
  19. 19.
    Rao, N.N.: Exact solutions of coupled scalar field equations. J. Phys. A Math. Gen. 22, 4813 (1989)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Singh, S.V., Rao, N.N., Shukla, P.K.: Nonlinearly coupled Langmuir and dust-acoustic waves in a dusty plasma. J. Plasma Phys. 3, 551 (1998)CrossRefGoogle Scholar
  21. 21.
    Zhang, X., Chen, Y.: General high-order rogue wave to NLS–Boussinesq equation with the dynamical analysis. arXiv:1710.08719 (2017)
  22. 22.
    Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  23. 23.
    Matsuno, Y.: Bilinear Transformation Method. Academic Press, New York (1984)zbMATHGoogle Scholar
  24. 24.
    Tian, K., Ge, Y., Zhu, X.: On the q-deformed modified Kadomtsev–Petviashvili hierarchy and its additional symmetries. Rom. Rep. Phys. 69, 110 (2017)Google Scholar
  25. 25.
    Jimbo, M., Miwa, T.: Solitons and infinite dimensional Lie algebras. Publ. RIMS Kyoto Univ. 19, 943–1001 (1983)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Ohta, Y., Wang, D.S., Yang, J.K.: General N-dark–dark solitons in the coupled nonlinear Schrödinger equation. Stud. Appl. Math. 127, 345 (2011)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Ohta, Y., Yang, J.K.: General high-order rogue waves and their dynamics in the nonlinear Schrödinger equation. Proc. R. Soc. A 468, 1716 (2012)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Ohta, Y., Yang, J.K.: Rogue waves in the Davey–Stewartson I equation. Phys. Rev. E 86, 036604 (2012)CrossRefGoogle Scholar
  29. 29.
    Sun, B.: General soliton solutions to a nonlocal long-wave short-wave resonance interaction equation with nonzero boundary condition. Nonlinear Dyn. 92, 1369 (2018)CrossRefGoogle Scholar
  30. 30.
    Liu, Y., Mihalache, D., He, J.: Families of rational solutions of the \(y\)-nonlocal Davey–Stewartson II equation. Nonlinear Dyn. 90, 2445 (2017)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Wazwaz, A., El-Tantawy, S.: Solving the (3+1)-dimensional KP–Boussinesq and BKP–Boussinesq equations by the simplified Hirota’s method. Nonlinear Dyn. 88, 3017 (2017)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Cao, Y., He, J., Mihalache, D.: Families of exact solutions of a new extended (\(2+1\))-dimensional Boussinesq equation. Nonlinear Dyn. 91, 2593 (2018)CrossRefGoogle Scholar
  33. 33.
    Liu, Y.K., Li, B., An, H.: General high-order breathers, lumps in the (\(2+1\))-dimensional Boussinesq equations. Nonlinear Dyn. 92, 2061 (2018)CrossRefGoogle Scholar
  34. 34.
    Wazwaz, A., El-Tantawy, S.: A new integrable (\(3+1\))-dimensional KdV-like model with its multiple-soliton solutions. Nonlinear Dyn. 83, 1529 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.College of ScienceZhejiang University of Science and TechnologyHangzhouPeople’s Republic of China
  2. 2.College of Mathematics Physics and Information EngineeringJiaxing UniversityJiaxingPeople’s Republic of China

Personalised recommendations