Advertisement

Nonlinear Dynamics

, Volume 94, Issue 4, pp 2307–2326 | Cite as

Parameters identification for chaotic systems based on a modified Jaya algorithm

  • Feixin Chen
  • Zhenghao Ding
  • Zhongrong Lu
  • Xiangkun Zeng
Original Paper
  • 168 Downloads

Abstract

In this paper, parameters identification for chaotic systems using a modified Jaya algorithm is considered. Firstly, the objective function is formulated based on the variance rate between the responses acquired from the measurement and calculation. Then, the Jaya algorithm is put forward to solve this nonlinear optimization problem. To enhance the performance of the original Jaya, a one-step K-means clustering mechanism and a new updated equation for the best-so-far solution are introduced. To demonstrate the effectiveness of the suggested method, benchmark functions are firstly employed to conduct optimize. Afterward, numerical simulations, including a jerk circuit chaotic system, a hyper-chaotic system and a synchronized chaotic system are used to verify the present algorithm. The simulation results illustrates that the proposed algorithm for chaotic systems is a promising tool with higher identification accuracy, faster convergence rate, as well as stronger robustness.

Keywords

Jaya algorithm Hyper-chaotic systems Clustering Synchronized Noise 

Notes

Acknowledgements

This work was supported by the Project of National Natural Science Foundation of China (No. 51305085), Science and Technology Planning Project of Guangdong Province (No. 2016A010102019) as well as Guangzhou City (No. 201607010229).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interests.

References

  1. 1.
    Lakshmanan, M.: Chaos in Nonlinear Oscillators: Controlling and Synchronization. World Scientific Publisher, Singapore (1996)zbMATHGoogle Scholar
  2. 2.
    Effati, S., Nik, H.S., Jajarmi, A.: Hyperchaos control of the hyperchaotic Chen system by optimal control design. Nonlinear Dyn. 73(1–2), 499–508 (2013)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Chen, D.Y., Shi, L., Chen, H.T., Ma, X.Y.: Analysis and control of a hyperchaotic system with only one nonlinear term. Nonlinear Dyn. 67(3), 1745–1752 (2011)MathSciNetGoogle Scholar
  4. 4.
    Hegazi, A.S., Agiza, H.N., Dessoky, M.M.E.: Synchronization for Rossler and Chua’s circuit systems. Int. J. Bifurc. Chaos 12(7), 1579–1597 (2002)zbMATHGoogle Scholar
  5. 5.
    Wang, C.C., Su, J.P.: A novel variable structure control scheme for chaotic synchronization. Chaos Solitons Fractal 18, 275–287 (2003)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Alfi, S., Fateh, M.M.: Intelligent identification and control using improved fuzzy particle swarm optimization. Expert Syst. Appl. 38, 12312–12317 (2011)Google Scholar
  7. 7.
    Jiang, G.P., Tang, W.K.S.: A global synchronization criterion for chaotic systems via unidirectional linear error feedback approach. Int. J. Bifurc. Chaos 12(10), 2239–2253 (2002)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Lu, Z.R., Law, S.S.: Features of dynamic response sensitivity and its application in damage detection. J. Sound Vib. 303(1–2), 305–329 (2007)Google Scholar
  9. 9.
    Zhang, M., Schmidt, R.: Sensitivity analysis of an auto-correlation-function-based damage index and its application in structural damage detection. J. Sound Vib. 333(26), 7352–7363 (2014)Google Scholar
  10. 10.
    Li, W., Jike, L., LU, Z.R.: Incremental response sensitivity approach for parameter identification of chaotic and hyperchaotic systems. Nonlinear Dyn. 89(1), 153–167 (2017)zbMATHGoogle Scholar
  11. 11.
    Modares, H., Alfi, A., Fateh, M.M.: Parameter identification of chaotic systems through an improved particle swarm optimization. Expert Systems with Applications. Expert Syst. Appl. 37(5), 3714–3720 (2010)Google Scholar
  12. 12.
    Dai, D., Ma, X.K., Li, F.C., You, Y.: An approach of parameter estimation for a chaotic system based on genetic algorithm. Acta Phys. Sin. 51(11), 2459–2462 (2002)Google Scholar
  13. 13.
    Li, L.X., Yang, Y.X., Peng, H.P., Wang, X.D.: An optimization method inspired by “chaotic” ant behavior. Int. J. Bifurc. Chaos 16(8), 2351–2364 (2006)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Peng, H., Li, L., Yang, Y., Liu, F.: Parameter estimation of dynamical systems via a chaotic ant swarm. Phys. Rev. E 81(1pt2), 016207 (2010)Google Scholar
  15. 15.
    Wang, L., Li, L.: An effective hybrid quantum-inspired evolutionary algorithm for parameter estimation of chaotic systems. Expert Syst. Appl. 37(2), 1279–1285 (2010)Google Scholar
  16. 16.
    Ding, Z.H., Lu, Z.R., Liu, J.K.: Parameters identification of chaotic systems based on artificial bee colony algorithm combined with cuckoo search strategy. Sci. China Technol. Sci. 60(7), 1–10 (2017)Google Scholar
  17. 17.
    Rao, R.V., Rai, D.P., Ramkumar, J., Balic, J.: A new multi-objective Jaya algorithm for optimization of modern machining processes. Adv. Prod. Eng. Manag. 11(4), 271–286 (2016)Google Scholar
  18. 18.
    Pahnehkolaei, S.M.A., Alfi, A., Sadollah, A., Kim, J.H.: Gradient-based Water Cycle Algorithm with evaporation rate applied to chaos suppression. Appl. Soft Comput. 53, 420–440 (2017)Google Scholar
  19. 19.
    Ameli, K., Alfi, A.: A fuzzy discrete harmony search algorithm applied to annual cost reduction in radial distribution systems. Eng. Optim. 48(9), 1529–1549 (2016)Google Scholar
  20. 20.
    Arab, A., Alfi, A.: An adaptive gradient descent-based local search in memetic algorithm for solving engineering problems. Inf. Sci. 299, 117–142 (2015)Google Scholar
  21. 21.
    Du, D.C., Vinh, H.H., Trung, V.D., Quyen, N.T.H., Trung, N.T.: Efficiency of Jaya algorithm for solving the optimization-based structural damage identification problem based on a hybrid objective function. Eng. Optim. 49(2), 1–19 (2017)MathSciNetGoogle Scholar
  22. 22.
    Ocłoń, P., Cisek, P., Rerak, M., Taler, D., Rao, R.V., Vallati, A., Pilarczyk, M.: Thermal performance optimization of the underground power cable system by using a modified Jaya algorithm. Int. J. Therm. Sci. 57(1), 162–180 (2018)Google Scholar
  23. 23.
    Rao, R.V., Saroj, A.: A self-adaptive multi-population based Jaya algorithm for engineering optimization. Swarm Evolut. Comput. 37(4), 1–26 (2017)Google Scholar
  24. 24.
    Wang, L., Zhang, Z.J., Huang, C., Tsui, K.: A GNU-accelerated parallel Jaya algorithm for efficiently estimating Li-ion battery model parameters. Appl. Soft Comput. 65, 12–20 (2018)Google Scholar
  25. 25.
    Dede, T.: Jaya algorithm to solve single objective size optimization problem for steel grillage structures. Steel Compos. Struct. 26(2), 163–170 (2018)MathSciNetGoogle Scholar
  26. 26.
    Črepinšek, M., Liu, S.H., Mernik, M.: Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput. Surv. 45(3), 35 (2013)zbMATHGoogle Scholar
  27. 27.
    Liu, S.H., Mernik, M., Hrnčič, D., Črepinšek, M.: A parameter control method of evolutionary algorithms using exploration and exploitation measures with a practical application for fitting Sovova’s mass transfer model. Appl. Soft Comput. 13, 3792–3805 (2013)Google Scholar
  28. 28.
    Farhang, Y.: Development of the meta-heuristic of PSOGA with K-means algorithm. Int. J. Comput. Sci. Netw. Secur. 17(6), 29–35 (2017)Google Scholar
  29. 29.
    Lu, Q., Yao, X.: Clustering and learning Gaussian distribution for continuous optimization. IEEE Trans. Syst. Man Cybern. Part C-Appl. Rev. 35(2), 195–204 (2005)Google Scholar
  30. 30.
    Črepinšek, M., Liu, S.H., Mernik, L., Mernik, M.: Is a comparison of results meaningful from the inexact replications of computational experiments? Soft. Comput. 20(1), 223–235 (2013)zbMATHGoogle Scholar
  31. 31.
    Črepinšek, M., Liu, S.H., Mernik, M.: Replication and comparison of computational experiments in applied evolutionary computing: common pitfalls and guidelines to avoid them. Appl. Soft Comput. 19, 161–170 (2014)Google Scholar
  32. 32.
    Wang, Y.J., Zhang, J.S., Zhang, G.Y.: A dynamic clustering based differential evolution algorithm for global optimization. Eur. J. Oper. Res. 183(1), 56–73 (2007)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Chen, K., Zhou, F.Y., Liu, A.L.: Chaotic dynamic weight particle swarm optimization for numerical function optimization. Knowl. Based Syst. 139, 23–40 (2017)Google Scholar
  34. 34.
    Xu, H.J., Ding, Z.H., Lu, Z.R., Liu, J.K.: Structural damage detection based on Chaotic Artificial Bee Colony algorithm. Struct. Eng. Mech. 55(6), 1223–1239 (2015)Google Scholar
  35. 35.
    Ngo, T.T., Sadollah, A., Kim, J.H.: A cooperative particle swarm optimizer with stochastic movements for computationally expensive numerical optimization problems. J. Comput. Sci. 13, 68–82 (2016)MathSciNetGoogle Scholar
  36. 36.
    EI-Abd, M.: Global-best brain storm optimization algorithm. Swarm Evolut. Comput. 37, 27–44 (2017)Google Scholar
  37. 37.
    Cao, Z., Hei, X., Wang, L., Shi, Y., Rong, X.: An improved brain storm optimization with differential evolution strategy for applications of ANNS. Math. Prob. Eng. 2015, 1–18 (2015)Google Scholar
  38. 38.
    Cao, Z., Shi, Y., Rong, X., Liu, B., Du, Z., Yang, B.: Random grouping brain storm optimization algorithm with a new dynamically changing step size. In: Proceedings International Conference on Swarm Intelligence, pp. 364–387 (2015)Google Scholar
  39. 39.
    EI-Abd, M.: Brain storm optimization algorithm with re-initialized ideas and modified step size. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 2682–2686 (2016)Google Scholar
  40. 40.
    Derrac, J., Garcia, S., Molina, D., Herrera, F.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evolut. Comput. 1(1), 3–18 (2011)Google Scholar
  41. 41.
    Njitacke, A., Kengne, J., Kengne, L.K.: Antimonotonicity, chaos and multiple coexisting attractors in a simple hybrid diode-based jerk circuit. Chaos Solitons Fractals 105, 77–91 (2017)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Zhou, X.Y., Wu, Z.J., Wang, H.: Gaussian bare-bones artificial bee colony algorithm. Soft. Comput. 20, 907–924 (2016)Google Scholar
  43. 43.
    Kiran, M.S.: Withering process for tree-seed algorithm. In: 8th International Conference on Advances in Information Technology, IAIT2016, pp. 19–22 December 2016, Macau, ChinaGoogle Scholar
  44. 44.
    Lu, Z.R., Yao, R.Z., Wang, L., Liu, J.K.: Identification of nonlinear hysteretic parameters by enhanced response sensitivity approach. Int. J. Non-Linear Mech. 96, 1–11 (2017)Google Scholar
  45. 45.
    Dadras, S., Momeni, H.R., Qi, G., Wang, Z.L.: Four-wing hyperchaotic attractor generated from a new 4D system with one equilibrium and its fractional-order form. Nonlinear Dyn. 67(2), 1161–1173 (2012)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Chen, X.Y., Ju, H.P., Cao, J.D., Qiu, J.L.: Adaptive synchronization of multiple uncertain coupled chaotic systems via sliding mode control. Neurocomputing. 273(17), 9–21 (2017)Google Scholar
  47. 47.
    Hajipour, M., Jajarmi, A., Baleanu, D.: An efficient nonstandard finite difference scheme for a class of fractional chaotic systems. J. Comput. Nonlinear Dyn. 13(2), 021013 (2017)Google Scholar
  48. 48.
    Jajarmi, A., Hajipour, M., Baleanu, D.: New aspects of the adaptive synchronization and hyperchaos suppression of a financial model. Chaos Solitons Fractals 99, 285–296 (2017)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Feixin Chen
    • 1
  • Zhenghao Ding
    • 2
  • Zhongrong Lu
    • 3
  • Xiangkun Zeng
    • 1
  1. 1.Guangdong Polytechnic Normal UniversityGuangzhouChina
  2. 2.Center for Infrastructural Monitoring and ProtectionCurtin UniversityBentleyAustralia
  3. 3.Department of MechanicsSun Yat-sen UniversityGuangzhouChina

Personalised recommendations