Advertisement

Nonlinear Dynamics

, Volume 94, Issue 3, pp 1819–1834 | Cite as

Numerical solutions of time-fractional partial integrodifferential equations of Robin functions types in Hilbert space with error bounds and error estimates

  • Omar Abu ArqubEmail author
  • Zaid Odibat
  • Mohammed Al-Smadi
Original Paper

Abstract

This paper introduces an efficient numerical algorithm for solving a significant class of linear and nonlinear time-fractional partial differential equation governed by Fredholm–Volterra operator in the sense of Robin conditions. A direct approach based on the normalized orthonormal function systems that fitted from the Gram–Schmidt orthogonalization process is utilized to transcribe the problem under study into appropriate Hilbert space. Some functional analysis theories such as upper error bound and convergence behavior under some assumptions which give the hypothetical premise of the proposed calculation are likewise talked about. Mathematical properties of the numerical results obtained are analyzed as well as general features of many numerical solutions have been identified. At long last, the used outcomes demonstrate that the present calculation and mimicked toughening give a decent planning procedure to such models.

Keywords

Hilbert space Fractional modeling Partial integrodifferential equation Robin functions types Fredholm–Volterra operator 

Notes

Acknowledgements

The authors would like to express their gratitude to the unknown referees for carefully reading the paper and their helpful comments.

References

  1. 1.
    Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London (2010)CrossRefGoogle Scholar
  2. 2.
    Zaslavsky, G.M.: Hamiltonian Chaos and Fractional Dynamics. Oxford University Press, Oxford (2005)zbMATHGoogle Scholar
  3. 3.
    Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)zbMATHGoogle Scholar
  4. 4.
    Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives Theory and Applications. Gordon and Breach, New York (1993)zbMATHGoogle Scholar
  5. 5.
    Kilbas, A., Srivastava, H., Trujillo, J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)zbMATHGoogle Scholar
  6. 6.
    Arshed, S.: B-spline solution of fractional integro partial differential equation with a weakly singular kernel. Numer. Methods Part. Differ. Equ. 33, 1565–1581 (2017)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Rostami, Y., Maleknejad, K.: Numerical solution of partial integro-differential equations by using projection method. Mediter. J. Math. 14, 113 (2017).  https://doi.org/10.1007/s00009-017-0904-z MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Huang, L., Li, X.F., Zhao, Y., Duan, X.Y.: Approximate solution of fractional integro-differential equations by Taylor expansion method. Comput. Math. Appl. 62, 1127–1134 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Mohammed, D.S.: Numerical solution of fractional integro-differential equations by least squares method and shifted Chebyshev polynomial. Math. Problems Eng. 2014, 5 (2014).  https://doi.org/10.1155/2014/431965 MathSciNetCrossRefGoogle Scholar
  10. 10.
    Momani, S., Qaralleh, R.: An efficient method for solving systems of fractional integro-differential equations. Comput. Math. Appl. 52, 459–470 (2006)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Tohidi, E., Ezadkhah, M.M., Shateyi, S.: Numerical solution of nonlinear fractional Volterra integro-differential equations via Bernoulli polynomials. Abstr. Appl. Anal. 2014, 7 (2014).  https://doi.org/10.1155/2014/162896 MathSciNetCrossRefGoogle Scholar
  12. 12.
    Wang, Y., Zhu, L.: Solving nonlinear Volterra integro-differential equations of fractional order by using Euler wavelet method. Adv. Differ. Equ. 2017, 27 (2017).  https://doi.org/10.1186/s13662-017-1085-6 MathSciNetCrossRefGoogle Scholar
  13. 13.
    Abu Arqub, O., El-Ajou, A., Momani, S.: Constructing and predicting solitary pattern solutions for nonlinear time-fractional dispersive partial differential equations. J. Comput. Phys. 293, 385–399 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    El-Ajou, A., Abu Arqub, O., Momani, S., Baleanu, D., Alsaedi, A.: A novel expansion iterative method for solving linear partial differential equations of fractional order. Appl. Math. Comput. 257, 119–133 (2015)MathSciNetzbMATHGoogle Scholar
  15. 15.
    El-Ajou, A., Abu Arqub, O., Momani, S.: Approximate analytical solution of the nonlinear fractional KdV-Burgers equation: A new iterative algorithm. J. Comput. Phys. 293, 81–95 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Ray, S.S.: New exact solutions of nonlinear fractional acoustic wave equations in ultrasound. Comput. Math. Appl. 71, 859–868 (2016)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ortigueira, M.D., Machado, J.A.T.: Fractional signal processing and applications. Signal Process. 83, 2285–2286 (2003)CrossRefGoogle Scholar
  18. 18.
    Zaremba, S.: L’equation biharminique et une class remarquable defonctionsfoundamentals harmoniques. Bull. Int. Acad. Sci. Crac. 39, 147–196 (1907)Google Scholar
  19. 19.
    Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337–404 (1950)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Cui, M., Lin, Y.: Nonlinear Numerical Analysis in the Reproducing Kernel Space. Nova Science, New York (2009)zbMATHGoogle Scholar
  21. 21.
    Berlinet, A., Agnan, C.T.: Reproducing Kernel Hilbert Space in Probability and Statistics. Kluwer, Boston (2004)CrossRefGoogle Scholar
  22. 22.
    Daniel, A.: Reproducing Kernel Spaces and Applications. Springer, Basel (2003)zbMATHGoogle Scholar
  23. 23.
    Weinert, H.L.: Reproducing Kernel Hilbert Spaces: Applications in Statistical Signal Processing. Hutchinson Ross, London (1982)Google Scholar
  24. 24.
    Lin, Y., Cui, M., Yang, L.: Representation of the exact solution for a kind of nonlinear partial differential equations. Appl. Math. Lett. 19, 808–813 (2006)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Zhoua, Y., Cui, M., Lin, Y.: Numerical algorithm for parabolic problems with non-classical conditions. J. Comput. Appl. Math. 230, 770–780 (2009)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Abu Arqub, O.: Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm. Int. J. Numer. Methods Heat Fluid Flow 28, 828–856 (2018)CrossRefGoogle Scholar
  27. 27.
    Abu Arqub, O.: Fitted reproducing kernel Hilbert space method for the solutions of some certain classes of time-fractional partial differential equations subject to initial and Neumann boundary conditions. Comput. Math. Appl. 73, 1243–1261 (2017)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Abu Arqub, O., Shawagfeh, N.: Application of reproducing kernel algorithm for solving Dirichlet time-fractional diffusion-Gordon types equations in porous media. J. Porous Media (2017) (In Press)Google Scholar
  29. 29.
    Abu Arqub, O., Rashaideh, H.: The RKHS method for numerical treatment for integrodifferential algebraic systems of temporal two-point BVPs. Neural Comput. Appl. (2017).  https://doi.org/10.1007/s00521-017-2845-7 CrossRefGoogle Scholar
  30. 30.
    Abu Arqub, O.: The reproducing kernel algorithm for handling differential algebraic systems of ordinary differential equations. Math. Methods Appl. Sci. 39, 4549–4562 (2016)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Abu Arqub, O., Al-Smadi, M., Shawagfeh, N.: Solving Fredholm integro-differential equations using reproducing kernel Hilbert space method. Appl. Math. Comput. 219, 8938–8948 (2013)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Abu Arqub, O., Al-Smadi, M.: Numerical algorithm for solving two-point, second-order periodic boundary value problems for mixed integro-differential equations. Appl. Math. Comput. 243, 911–922 (2014)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Momani, S., Abu Arqub, O., Hayat, T., Al-Sulami, H.: A computational method for solving periodic boundary value problems for integro-differential equations of Fredholm–Voltera type. Appl. Math. Comput. 240, 229–239 (2014)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Abu Arqub, O., Al-Smadi, M., Momani, S., Hayat, T.: Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method. Soft Comput. 20, 3283–3302 (2016)CrossRefGoogle Scholar
  35. 35.
    Abu Arqub, O., Al-Smadi, M., Momani, S., Hayat, T.: Application of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problems. Soft Comput. 21, 7191–7206 (2017)CrossRefGoogle Scholar
  36. 36.
    Abu Arqub, O.: Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm-Volterra integrodifferential equations. Neural Comput. Appl. 28, 1591–1610 (2017)CrossRefGoogle Scholar
  37. 37.
    Abu Arqub, O.: Approximate solutions of DASs with nonclassical boundary conditions using novel reproducing kernel algorithm. Fundam. Inf. 146, 231–254 (2016)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Abu Arqub, O., Maayah, B.: Solutions of Bagley-Torvik and Painlevé equations of fractional order using iterative reproducing kernel algorithm. Neural. Comput. Appl. 29, 1465–1479 (2018)CrossRefGoogle Scholar
  39. 39.
    Abu Arqub, O., Al-Smadi, M.: Numerical algorithm for solving time-fractional partial integrodifferential equations subject to initial and Dirichlet boundary conditions. Numer. Methods Part. Differ. Equ. (2017).  https://doi.org/10.1002/num.22209 CrossRefGoogle Scholar
  40. 40.
    Abu Arqub, O.: Solutions of time-fractional Tricomi and Keldysh equations of Dirichlet functions types in Hilbert space. Numer. Methods Part. Differ. Equ. (2017).  https://doi.org/10.1002/num.22236 CrossRefGoogle Scholar
  41. 41.
    Geng, F.Z., Qian, S.P.: Reproducing kernel method for singularly perturbed turning point problems having twin boundary layers. Appl. Math. Lett. 26, 998–1004 (2013)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Jiang, W., Chen, Z.: A collocation method based on reproducing kernel for a modified anomalous subdiffusion equation. Numer. Methods Part. Differ. Equ. 30, 289–300 (2014)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Geng, F.Z., Qian, S.P., Li, S.: A numerical method for singularly perturbed turning point problems with an interior layer. J. Comput. Appl. Math. 255, 97–105 (2014)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Geng, F.Z., Cui, M.: A reproducing kernel method for solving nonlocal fractional boundary value problems. Appl. Math. Lett. 25, 818–823 (2012)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Jiang, W., Chen, Z.: Solving a system of linear Volterra integral equations using the new reproducing kernel method. Appl. Math. Comput. 219, 10225–10230 (2013)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Geng, F.Z., Qian, S.P.: Modified reproducing kernel method for singularly perturbed boundary value problems with a delay. Appl. Math. Model. 39, 5592–5597 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceAl-Balqa Applied UniversitySaltJordan
  2. 2.School of Basic Sciences and HumanitiesGerman Jordanian UniversityAmmanJordan
  3. 3.Department of Applied Science, Ajloun CollegeAl-Balqa Applied UniversityAjlounJordan

Personalised recommendations