Advertisement

Nonlinear Dynamics

, Volume 94, Issue 2, pp 889–904 | Cite as

Nonlinear dynamics of a non-autonomous network with coupled discrete–continuum oscillators

  • Haicheng Zhang
  • Daolin Xu
  • Shuyan Xia
  • Yousheng Wu
Original Paper
  • 103 Downloads

Abstract

A network model of a multi-modular floating platform incorporated with a runway structure, viewed as a non-autonomous network with discrete–continuum oscillators, is developed for a general purpose of dynamic analysis. Numerical analysis shows the coupling effect between the two different types of oscillators on various complex dynamics, including sudden leaps, torus motions, beating vibrations, the synergetic effect of phase lock and anti-phase synchronizations. The amplitude death phenomenon, a suppressed weak oscillation state, is studied by using the fundamental solution derived by the averaging method. The parametric domain of the onset of amplitude death is illustrated to show the great significance to the stability design of the floating platform. The effect of the flexural rigidity of the runway on the distribution of amplitude death state is also discussed.

Keywords

Non-autonomous network Discrete-continuum oscillators Floating airport Network dynamics Amplitude death 

Notes

Acknowledgements

This research work was supported by the National Natural Science Foundation of China (11702088, 11472100), Project funded by China Postdoctoral Science Foundation (2017M620344, 2018T110823) and the High-tech Ship Research Projects Sponsored by MIIT.

References

  1. 1.
    Kuznetsov, A.P., Stankevich, N.V., Tyuryukina, L.V.: The death of quasi-periodic regimes in a system of dissipatively coupled van der Pol oscillators under pulsed drive action. Tech. Phys. Lett. 34, 643–645 (2008)Google Scholar
  2. 2.
    Bar-Eli, K.: Coupling of chemical oscillators. J. Phys. Chem. 88, 3616–3622 (1984)CrossRefGoogle Scholar
  3. 3.
    Hastings, A.: Transient dynamics and persistence of ecological systems. Ecol. Lett. 4, 215–220 (2001)CrossRefGoogle Scholar
  4. 4.
    Li, J., Yu, J., Miao, Z., Zhou, J.: Region reaching control of networked robot systems. In: Proceedings of the 36th Chinese Control Conference, pp. 8662–8667, Dalian, China (2017)Google Scholar
  5. 5.
    Yu, J., Ji, J., Miao, Z., Zhou, J.: Adaptive formation control of networked Lagrangian systems with a moving leader. Nonlinear Dyn. 90, 2755–2766 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  7. 7.
    Kaneko, K.: Theory and Applications of Coupled Map Lattices. Wiley, New York (1993)zbMATHGoogle Scholar
  8. 8.
    Ott, E.: Chaos in Dynamical Systems. Cambridge University Press, Cambridge (2002)CrossRefzbMATHGoogle Scholar
  9. 9.
    Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Rosa, E., Ott, E., Hess, M.H.: Transition to phase synchronization of chaos. Phys. Rev. Lett. 80, 1642–1645 (1998)CrossRefGoogle Scholar
  11. 11.
    Rosenblum, M.G., Pikovsky, A.S., Kurths, J.: From phase to lag synchronization in coupled chaotic oscillators. Phys. Rev. Lett. 78, 4193–4196 (1997)CrossRefzbMATHGoogle Scholar
  12. 12.
    Kocarev, L., Parlitz, U.: Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems. Phys. Rev. Lett. 76, 1816–1819 (1996)CrossRefGoogle Scholar
  13. 13.
    Zaks, M.A., Park, E.H., Rosenblum, M.G., Kurths, J.: Alternating locking ratios in imperfect phase synchronization. Phys. Rev. Lett. 82, 4228–4231 (1999)CrossRefGoogle Scholar
  14. 14.
    Boccaletti, S., Valladares, D.L.: Characterization of intermittent lag synchronization. Phys. Rev. E 62, 7497–7500 (2000)CrossRefGoogle Scholar
  15. 15.
    Femat, R., Solıs-Perales, G.: On the chaos synchronization phenomena. Phys. Lett. A 262, 50–60 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Winfree, A.T.: Biological rhythms and the behavior of populations of coupled oscillators. J. Theor. Biol. 16, 15–42 (1967)CrossRefGoogle Scholar
  17. 17.
    Kiss, I.Z.: Emerging coherence in a population of chemical oscillators. Science 296, 1676–1678 (2002)CrossRefGoogle Scholar
  18. 18.
    Boccaletti, S., Bianconi, G., Criado, R., del Genio, C.I., Gómez-Gardeñes, J., Romance, M., Sendiña-Nadal, I., Wang, Z., Zanin, M.: The structure and dynamics of multilayer networks. Phys. Rep. 544, 1–122 (2014)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Matthews, P., Strogatz, S.: Phase diagram for the collective behavior of limit-cycle oscillators. Phys. Rev. Lett. 65, 1701–1704 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Resmi, V., Ambika, G., Amritkar, R.E.: Synchronized states in chaotic systems coupled indirectly through a dynamic environment. Phys. Rev. E 81, 46216 (2010)CrossRefGoogle Scholar
  21. 21.
    Zhang, X., Wu, Y., Peng, J.: Analytical conditions for amplitude death induced by conjugate variable couplings. Int. J. Bifurc. Chaos. 21, 225–235 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Ermentrout, G.B.: Oscillator death in populations of “all to all” coupled nonlinear oscillators. Phys. D Nonlinear Phenom. 41, 219–231 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Aronson, D.G., Ermentrout, G.B., Kopell, N.: Amplitude response of coupled oscillators. Phys. D Nonlinear Phenom. 41, 403–449 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Mirollo, R.E., Strogatz, S.H.: Amplitude death in an array of limit-cycle oscillators. J. Stat. Phys. 60, 245–262 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Ramana Reddy, D., Sen, A., Johnston, G.: Time delay induced death in coupled limit cycle oscillators. Phys. Rev. Lett. 80, 5109–5112 (1998)CrossRefGoogle Scholar
  26. 26.
    Reddy, D.V.R., Sen, A., Johnston, G.L.: Time delay effects on coupled limit cycle oscillators at Hopf bifurcation. Phys. D Nonlinear Phenom. 129, 15–34 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Ramana Reddy, D., Sen, A., Johnston, G.: Experimental evidence of time-delay-induced death in coupled limit-cycle oscillators. Phys. Rev. Lett. 85, 3381–3384 (2000)CrossRefGoogle Scholar
  28. 28.
    Karnatak, R., Ramaswamy, R., Prasad, A.: Amplitude death in the absence of time delays in identical coupled oscillators. Phys. Rev. E 76, 35201 (2007)CrossRefGoogle Scholar
  29. 29.
    Konishi, K.: Amplitude death induced by dynamic coupling. Phys. Rev. E 68, 67202 (2003)CrossRefGoogle Scholar
  30. 30.
    Chen, Y., Xiao, J., Liu, W., Li, L., Yang, Y.: Dynamics of chaotic systems with attractive and repulsive couplings. Phys. Rev. E 80, 46206 (2009)CrossRefGoogle Scholar
  31. 31.
    Prasad, A., Dhamala, M., Adhikari, B.M., Ramaswamy, R.: Amplitude death in nonlinear oscillators with nonlinear coupling. Phys. Rev. E 81, 27201 (2010)CrossRefGoogle Scholar
  32. 32.
    Resmi, V., Ambika, G., Amritkar, R.E.: General mechanism for amplitude death in coupled systems. Phys. Rev. E 84, 46212 (2011)CrossRefGoogle Scholar
  33. 33.
    Sun, X., Xu, J., Fu, J.: The effect and design of time delay in feedback control for a nonlinear isolation system. Mech. Syst. Signal Process. 87, 206–217 (2017)CrossRefGoogle Scholar
  34. 34.
    Ahn, K.H.: Enhanced signal-to-noise ratios in frog hearing can be achieved through amplitude death. J. R. Soc. Interface 10, 20130525 (2013)CrossRefGoogle Scholar
  35. 35.
    Kim, K.J., Ahn, K.H.: Amplitude death of coupled hair bundles with stochastic channel noise. Phys. Rev. E 89, 42703 (2014)CrossRefGoogle Scholar
  36. 36.
    Zhang, H.C., Xu, D.L., Xia, S.Y., Lu, C., Qi, E.R., Tian, C., Wu, Y.S.S., Xia, Y., Lu, C., Qi, E.R., Tian, C., Wu, Y.S.: Nonlinear network modeling of multi-module floating structures with arbitrary flexible connections. J. Fluids Struct. 59, 270–284 (2015)CrossRefGoogle Scholar
  37. 37.
    Zhang, H.C., Xu, D.L., Lu, C., Xia, S.Y., Qi, E.R., Hu, J.J., Wu, Y.S.: Network dynamic stability of floating airport based on amplitude death. Ocean Eng. 104, 129–139 (2015)CrossRefGoogle Scholar
  38. 38.
    Zhang, H.C., Xu, D.L., Lu, C., Qi, E.R., Hu, J.J., Wu, Y.S.: Amplitude death of a multi-module floating airport. Nonlinear Dyn. 79, 2385–2394 (2015)CrossRefGoogle Scholar
  39. 39.
    Xu, D.L., Zhang, H.C., Lu, C., Qi, E.R., Tian, C., Wu, Y.S.: Analytical criterion for amplitude death in nonautonomous systems with piecewise nonlinear coupling. Phys. Rev. E 89, 42906 (2014)CrossRefGoogle Scholar
  40. 40.
    Xiong, Y.P., Xing, J.T., Price, W.G.: A general linear mathematical model of power flow analysis and control for integrated structure-control systems. J. Sound Vib. 267, 301–334 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Zhang, H.C., Xu, D.L., Liu, C.R., Wu, Y.S.: Wave energy absorption of a wave farm with an array of buoys and flexible runway. Energy 109, 211–223 (2016)CrossRefGoogle Scholar
  42. 42.
    Watanabe, E., Utsunomiya, T., Wang, C.M.: Hydroelastic analysis of pontoon-type VLFS: a literature survey. Eng. Struct. 26, 245–256 (2004)CrossRefGoogle Scholar
  43. 43.
    Cheng, H.Z., Wang, P., Zou, G.P.: Research on static mechanical properties of metal rubber by wire mesh. Appl. Mech. Mater. 633–634, 238–241 (2014)CrossRefGoogle Scholar
  44. 44.
    Yu, H., Sun, X., Xu, J., Zhang, S.: Transition sets analysis based parametrical design of nonlinear metal rubber isolator. Int. J. Nonlinear Mech. 96, 93–105 (2017)CrossRefGoogle Scholar
  45. 45.
    Stoker, J.J.: Water waves: the mathematical theory with applications. Wiley-Interscience, Hoboken (2011)zbMATHGoogle Scholar
  46. 46.
    Siddorn, P., Eatock Taylor, R.: Diffraction and independent radiation by an array of floating cylinders. Ocean Eng. 35, 1289–1303 (2008)CrossRefGoogle Scholar
  47. 47.
    Yeung, R.W.: Added mass and damping of a vertical cylinder in finite-depth waters. Appl. Ocean Res. 3, 119–133 (1981)CrossRefGoogle Scholar
  48. 48.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1964)zbMATHGoogle Scholar
  49. 49.
    Balthazar, J.M., Mook, D.T., Weber, H.I., Brasil, M.L.R.F., Fenili, A., Belato, D., Felix, J.L.P.: An overview on non-ideal vibrations. Meccanica 38, 613–621 (2003)CrossRefzbMATHGoogle Scholar
  50. 50.
    Park, S., Chung, J.: Dynamic analysis of an axially moving finite-length beam with intermediate spring supports. J. Sound Vib. 333, 6742–6759 (2014)CrossRefGoogle Scholar
  51. 51.
    Felix, J.L.P., Balthazar, J.M., Dantas, M.J.H.: On energy pumping, synchronization and beat phenomenon in a nonideal structure coupled to an essentially nonlinear oscillator. Nonlinear Dyn. 56, 1–11 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Banerjee, T., Biswas, D.: Amplitude death and synchronized states in nonlinear time-delay systems coupled through mean-field diffusion. Chaos 23, 43101 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Cao, L.Y., Lai, Y.C.: Antiphase synchronism in chaotic systems. Phys. Rev. E 58, 382–386 (1998)CrossRefGoogle Scholar
  54. 54.
    Zhai, Y., Kiss, I., Hudson, J.: Amplitude death through a Hopf bifurcation in coupled electrochemical oscillators: experiments and simulations. Phys. Rev. E 69, 26208 (2004)CrossRefGoogle Scholar
  55. 55.
    Karnatak, R., Punetha, N., Prasad, A., Ramaswamy, R.: Nature of the phase-flip transition in the synchronized approach to amplitude death. Phys. Rev. E 82, 46219 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Haicheng Zhang
    • 1
  • Daolin Xu
    • 1
  • Shuyan Xia
    • 1
  • Yousheng Wu
    • 2
  1. 1.State Key Laboratory of Advanced Design and Manufacturing for Vehicle BodyHunan UniversityChangshaPeople’s Republic of China
  2. 2.China Ship Scientific Research CenterWuxiPeople’s Republic of China

Personalised recommendations