Advertisement

Nonlinear Dynamics

, Volume 94, Issue 1, pp 365–376 | Cite as

Robust nonlinear control design for dynamic positioning of marine vessels with thruster system dynamics

  • Xin Hu
  • Jialu Du
Original Paper

Abstract

Considering the dynamics characteristics of thruster systems for dynamically positioned marine vessels with model parameter uncertainties and unknown time-varying ocean disturbances, the dynamic positioning (DP) control problem becomes a mismatched nonlinear control problem. To solve this problem, a DP robust nonlinear control law is developed using the command filtered vectorial backstepping combined with a disturbance observer (DO) and an auxiliary dynamic system (ADS). The DO provides the estimates of mismatched compound disturbances induced by model parameter uncertainties and unknown ocean disturbances. The ADS addresses the effects of thrust saturation constraints. The command filtered vectorial backstepping obviates differentiations of intermediate control function vectors due to introducing command filters and compensates for filtering errors of intermediate control function vectors caused by command filters by means of designed dynamic systems. The developed DP control law is computationally simple and the DP control performance is improved. Under the developed DP control law, the positioning errors of vessels are made as small as desired and all signals in the DP closed-loop control system are uniformly ultimately bounded. The high-fidelity simulation results on a supply vessel validate the developed DP control law.

Keywords

Dynamic positioning Thruster system dynamics Saturation constraints Disturbance observer Command filtered vectorial backstepping 

References

  1. 1.
    Sørensen, A.J.: A survey of dynamic positioning control systems. Ann. Rev. Control 35(1), 123–136 (2011)CrossRefGoogle Scholar
  2. 2.
    Fossen, T.I.: Guidance and Control of Ocean Vehicles. Wiley, Chichester (1994)Google Scholar
  3. 3.
    Balchen, J.G., Jenssen, N.A., Sælid, S.: Dynamic positioning using Kalman filtering and optimal control theory. In: Proceedings of IFAC/IFIP Symposium on Automation in Offshore Oil Field Operation, pp. 183–186 (1976)Google Scholar
  4. 4.
    Balchen, J.G., Jenssen, N.A., Sælid, S.: Dynamic positioning of floating vessels based on Kalman filtering and optimal control. In: Proceedings of the 19th IEEE Conference on Decision and Control, pp. 852–864 (1980)Google Scholar
  5. 5.
    Grimble, M.J., Patton, R.J., Wise, D.A.: Use of Kalman filtering techniques in dynamic ship positioning systems. In: IEE Proceedings D-Control Theory and Applications, vol. 127(3), pp. 93 (1980)CrossRefGoogle Scholar
  6. 6.
    Grimble, M.J., Patton, R.J., Wise, D.A.: The design of dynamic ship positioning control systems using extended Kalman filtering techniques. In: Oceans, pp. 488–497. San Diego (1979)Google Scholar
  7. 7.
    Fung, P., Grimble, M.J.: Dynamic ship positioning using a self-tuning Kalman filter. IEEE Trans. Autom. Control 28(3), 339–350 (1983)CrossRefGoogle Scholar
  8. 8.
    Grøvlen, A., Fossen, T.I.: Nonlinear control of dynamic positioned ships using only position feedback: an observer backstepping approach. In: Proceedings of the 35th IEEE Conference on Decision and Control, pp. 3388–3393. Kobe (1996)Google Scholar
  9. 9.
    Fossen, T.I., Grøvlen, A.: Nonlinear output feedback control of dynamically positioned ships using vectorial observer backstepping. IEEE Trans. Control Syst. Technol. 6(1), 121–128 (1998)CrossRefGoogle Scholar
  10. 10.
    Chang, W.J., Chen, G.J., Yeh, Y.L.: Fuzzy control of dynamic positioning systems for ships. J. Mar. Sci. Technol. 10(1), 47–53 (2002)Google Scholar
  11. 11.
    Fossen, T.I., Strand, J.P.: Nonlinear passive weather optimal positioning control (WOPC) system for ships and rigs: experimental results. Automatica 37(5), 701–715 (2001)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Tsopelakos, A., Papadopoulos, E.: Design and evaluation of dynamic positioning controllers with parasitic thrust reduction for an overactuated floating platform. IEEE Trans. Control Syst. Technol. 25(1), 145–160 (2017)CrossRefGoogle Scholar
  13. 13.
    Værnø, S.A.T., Brodtkorb, A.H., Skjetne, R., Sørensen, A.J.: An output feedback controller with improved transient response of marine vessels in dynamic positioning. In: IFAC-PapersOnline, vol. 49(23), pp. 133–138 (2016)Google Scholar
  14. 14.
    Nguyen, T.D., Sørensen, A.J., Quek, S.T.: Design of hybrid controller for dynamic positioning from calm to extreme sea conditions. Automatica 43(5), 768–785 (2007)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Tannuri, E.A., Agostinho, A.C., Morishita, H.M., Moratelli Jr., L.: Dynamic positioning systems: an experimental analysis of sliding mode control. Control Eng. Pract. 18(10), 1121–1132 (2010)CrossRefGoogle Scholar
  16. 16.
    Benetazzo, F., Ippoliti, G., Longhi, S., Raspa, P.: Discrete time variable structure control for the dynamic positioning of an offshore supply vessel. In: Proceedings of the 2012 IFAC Workshop on Automatic Control in Offshore Oil and Gas Production, pp. 171–176. Norwegian University of Science and Technology, Trondheim, May 31–June 1 (2012)CrossRefGoogle Scholar
  17. 17.
    Kjerstad, Ø. K., Skjetne, R., Jenssen, N.A.: Disturbance rejection by acceleration feedforward: application to dynamic positioning. In: Proceedings of the 18th World Congress The International Federation of Automatic Control Milano (Italy), pp. 2523–2528 Aug 28–Sept 2 (2011)CrossRefGoogle Scholar
  18. 18.
    Hu, X., Du, J.L., Shi, J.W.: Adaptive fuzzy controller design for dynamic positioning system of vessels. Appl. Ocean Res. 53, 46–53 (2015)CrossRefGoogle Scholar
  19. 19.
    Liu, L., Wang, D., Peng, Z.H.: Dynamic and composite iterative neural control for cooperative dynamic positioning of marine surface vessels. Nonlinear Dyn. 81, 1315–1328 (2015)CrossRefGoogle Scholar
  20. 20.
    Hassani, V., Sørensen, A.J., Pascoal, A.M., Athans, M.: Robust dynamic positioning of offshore vessels using mixed-\(\upmu \) synthesis modeling, design, and practice. Ocean Eng. 129(1), 389–400 (2017)CrossRefGoogle Scholar
  21. 21.
    Perez, T., Donaire, A.: Constrained control design for dynamic positioning of marine vehicles with control allocation. Model. Identif. Control 30(2), 57–70 (2009)CrossRefGoogle Scholar
  22. 22.
    Donaire, A., Perez, T.: Dynamic positioning of marine craft using a port-Hamiltonian framework. Automatica 48(5), 851–856 (2012)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Veksler, A., Johansen, T.A., Borrelli, F., Realfsen, B.: Dynamic positioning with model predictive control. IEEE Trans. Control Syst. Technol. 24(4), 1340–1353 (2016)CrossRefGoogle Scholar
  24. 24.
    Chang, W.J., Liang, H.J., Ku, C.C.: Fuzzy controller design subject to actuator saturation for dynamic ship positioning systems with multiplicative noises. Proc. Inst. Mech. Eng. I J. Syst. Control Eng. 224(6), 725–736 (2010)Google Scholar
  25. 25.
    Du, J.L., Hu, X., Krstic, M., Sun, Y.Q.: Robust dynamic positioning of ships with disturbances under input saturation. Automatica 73, 207–214 (2016)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Fossen, T.I.: Handbook of Marine Craft Hydrodynamics and Motion Control. Wiley, Chichester (2011)CrossRefGoogle Scholar
  27. 27.
    Fossen, T.I., Strand, J.P.: Passive nonlinear observer design for ships using Lyapunov methods: full-scale experiments with a supply vessel. Automatica 35(1), 3–16 (1999)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Sørensen, A.J., Sagatun, S.I., Fossen, T.I.: Design of a dynamic positioning system using model-based control. Control Eng. Pract. 4(3), 359–368 (1996)CrossRefGoogle Scholar
  29. 29.
    Berge, S.P., Fossen, T.I.: Robust control allocation of overactuated ships: experiments with a model ship. In: IFAC Manoeuvring and Control of Marine Craft, pp. 193–198. Brijuni (1997)Google Scholar
  30. 30.
    Farrell, J.A., Polycarpou, M.M., Sharma, M., Dong, W.J.: Command filtered backstepping. IEEE Trans. Autom. Control 54(6), 1391–1395 (2009)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Dong, W.J., Farrell, J.A., Polycarpou, M.M., Djapic, V., Sharma, M.: Command filtered adaptive backstepping. IEEE Trans. Control Syst. Technol. 20(3), 566–580 (2012)CrossRefGoogle Scholar
  32. 32.
    Hou, Y.X., Tong, S.C.: Command filter-based adaptive fuzzy backstepping control for a class of switched nonlinear systems. Fuzzy Sets Syst. 314, 46–60 (2017)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Chen, M., Ge, S.S., Ren, B.B.: Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints. Automatica 47(3), 452–465 (2011)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Zheng, Z.W., Huang, Y.T., Xie, L.H., Zhu, B.: Adaptive trajectory tracking control of a fully actuated surface vessel with asymmetrically constrained input and output. IEEE Trans. Control Syst. Technol. (2018).  https://doi.org/10.1109/TCST.2017.2728518 CrossRefGoogle Scholar
  35. 35.
    Zheng, Z.W., Sun, L., Xie, L.H.: Error constrained LOS path following of a surface vessel with actuator saturation and faults. IEEE Trans. Syst. Man Cybern. Syst. (2018).  https://doi.org/10.1109/TSMC.2017.2717850 CrossRefGoogle Scholar
  36. 36.
    Zheng, Z.W., Feroskhan, M.: Path following of a surface vessel with prescribed performance in the presence of input saturation and external disturbances. IEEE/ASME Trans. Mechatron. 22(6), 2564–2575 (2017)CrossRefGoogle Scholar
  37. 37.
    Fossen, T.I., Berge, S.P.: Nonlinear vectorial backstepping design for global exponential tracking of marine vessels in the presence of thruster dynamics. In: Proceedings of the 36th Conference on Decision and Control, pp. 4237–4242. San Diego, Dec 12 (1997)Google Scholar
  38. 38.
    Alme, J.: Auto-tuned dynamic positioning for marine surface vessels. Master’s thesis, Norwegian University of Science and Technology. Trondheim (2008)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Marine Electrical Engineering CollegeDalian Maritime UniversityDalianChina

Personalised recommendations