Nonlinear Dynamics

, Volume 93, Issue 4, pp 2565–2578 | Cite as

Modal damping variations in nonlinear dynamical systems

  • Mohammad A. AL-ShudeifatEmail author
Original Paper


For any linear dynamical system coupled with one or more nonlinear dynamical attachments, the effect of nonlinear energy content on modal damping variations of the entire system has not been clearly addressed in the literature. Accordingly, a novel method is employed here to formulate the amplitude-dependent modal damping matrix for such nonlinear dynamical systems using an amplitude-dependent stiffness approach. The proposed method is directly applied into the equations of motion where numerical and analytical solutions are not required to be known a priori. This advantage is highly desirable to study the dynamical behavior of nonlinear dynamical systems by direct application of methods into equations of motion. Accordingly, the modal damping content variations under the effect of amplitude-dependent stiffness are investigated here. The method is based on linearizing the nonlinear coupling stiffness where a scaled amplitude-dependent stiffness has been obtained to replace the original nonlinear coupling stiffness in the system. Accordingly, the amplitude-dependent modal damping matrix in modal coordinates is obtained and investigated. Consequently, new significant findings regarding modal damping content variations under the effect of the change in nonlinear energy during oscillation are achieved through this study. Furthermore, the nonlinear amplitude-dependent modal damping matrix of the equivalent system is found to be satisfying all matrix similarity conditions with the linear amplitude-independent modal damping matrix of the original system. These findings are expected to be of significant impact on passive nonlinear targeted energy transfer for shock mitigation and energy-harvesting fields.


Nonlinear dynamical systems Frequency-energy dependence Nonlinear frequency Nonlinear stiffness Nonlinear modal damping content 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Vakakis, A.F., Gendelman, O.V., Kerschen, G., Bergman, L.A., McFarland, D.M., Lee, Y.S.: Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems I and II. Springer, Berlin (2008)zbMATHGoogle Scholar
  2. 2.
    Peeters, M., Viguié, R., Sérandour, G., Kerschen, G., Golinval, J.C.: Nonlinear normal modes, part II: toward a practical computation using numerical continuation techniques. Mech. Syst. Signal Process. 23(1), 195–216 (2009)CrossRefGoogle Scholar
  3. 3.
    Kerschen, G., Peeters, M., Golinval, J.C.: Nonlinear normal modes, part I: a useful framework for the structural dynamicits. Mech. Syst. Signal Process. 23, 170–194 (2009)CrossRefGoogle Scholar
  4. 4.
    Renson, L., Kerschen, G., Cochelin, B.: Numerical computation of nonlinear normal modes in mechanical engineering. J. Sound Vib. 364, 177–206 (2016)CrossRefGoogle Scholar
  5. 5.
    Salenger, G., Vakakis, A.F., Gendelman, O., Manevitch, L., Andrianov, I.: Transitions from strongly to weakly nonlinear motions of damped nonlinear oscillators. Nonlinear Dyn. 20(2), 99–114 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Nayfeh, A.H.: Perturbation Methods. Wiley, New York (1973)zbMATHGoogle Scholar
  7. 7.
    Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)zbMATHGoogle Scholar
  8. 8.
    Luo, A.C.J., Huang, J.: Approximate solutions of periodic motions in nonlinear systems via a generalized harmonic balance. J. Vib. Control 18(11), 1661–1674 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Beléndez, A., Hernández, A., Márquez, A., Beléndez, T., Neipp, C.: Analytical approximations for the period of a nonlinear pendulum. Eur. J. Phys. 27(3), 539–551 (2006)CrossRefzbMATHGoogle Scholar
  10. 10.
    Beléndez, A., Hernández, A., Beléndez, T., Álvarez, M.L., Gallego, S., Ortuño, M., Neipp, C.: Application of the harmonic balance method to a nonlinear oscillator typified by a mass attached to a stretched wire. J. Sound Vib. 302(4–5), 1018–1029 (2007)CrossRefGoogle Scholar
  11. 11.
    Sun, W.P., Wu, B.S., Lim, C.W.: Approximate analytical solutions for oscillation of a mass attached to a stretched elastic wire. J. Sound Vib. 300(3), 1042–1047 (2007)CrossRefzbMATHGoogle Scholar
  12. 12.
    Durmaz, S., Demirbağ, S.A., Kaya, M.O.: Approximate solutions for nonlinear oscillation of a mass attached to a stretched elastic wire. Comput. Math. Appl. 61(3), 578–585 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Mickens, R.E.: Comments on the method of harmonic balance. J. Sound Vib. 94, 456–460 (1984)CrossRefGoogle Scholar
  14. 14.
    Beléndez, A., Beléndez, T., Márquez, A., Neipp, C.: Application of He’s homotopy perturbation method to conservative truly nonlinear oscillators. Chaos Solitons Fractals 37(3), 770–780 (2008)CrossRefzbMATHGoogle Scholar
  15. 15.
    Cveticanin, L.: Homotopy-perturbation method for pure nonlinear differential equation. Chaos Solitons Fractals 30(5), 1221–1230 (2006)CrossRefzbMATHGoogle Scholar
  16. 16.
    Beléndez, A., Beléndez, T., Neipp, C., Hernández, A., Álvarez, M.L.: Approximate solutions of a nonlinear oscillator typified as a mass attached to a stretched elastic wire by the homotopy perturbation method. Chaos Solitons Fractals 39(2), 746–764 (2009)CrossRefzbMATHGoogle Scholar
  17. 17.
    Cveticanin, L.: Analytical methods for solving strongly non-linear differential equations. J. Sound Vib. 214(2), 325–338 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Cveticanin, L.: Pure odd-order oscillators with constant excitation. J. Sound Vib. 330(5), 976–986 (2011)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Brennan, M.J., Kovacic, I., Carrella, A., Waters, T.P.: On the jump-up and jump-down frequencies of the Duffing oscillator. J. Sound Vib. 318(4), 1250–1261 (2008)CrossRefGoogle Scholar
  20. 20.
    Burton, T.D.: On the amplitude decay of strongly non-linear damped oscillators. J. Sound Vib. 87(4), 535–541 (1983)CrossRefzbMATHGoogle Scholar
  21. 21.
    Yuste, S.B., Bejarano, J.D.: Amplitude decay of damped non-linear oscillators studied with Jacobian elliptic functions. J. Sound Vib. 114(1), 33–44 (1987)CrossRefzbMATHGoogle Scholar
  22. 22.
    Mickens, R.E.: A generalized iteration procedure for calculating approximations to periodic solutions of truly nonlinear oscillators. J. Sound Vib. 287(4–5), 1045–1051 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    AL-Shudeifat, M.A.: Analytical formulas for the energy, velocity and displacement decays of purely nonlinear damped oscillators. J. Vib. Control 21(6), 1210–1219 (2013)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Andrianov, I.V., Awrejcewicz, J.: Asymptotical behavior of a system with damping and high power-form non-linearity. J. Sound Vib. 267, 1169–1174 (2003)CrossRefzbMATHGoogle Scholar
  25. 25.
    Gottlieb, H.P.W.: Frequencies of oscillators with fractional-power non-linearities. J. Sound Vib. 261(3), 557–566 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Cveticanin, L.: Oscillator with fraction order restoring force. J. Sound Vib. 320(4), 1064–1077 (2009)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Rakaric, Z., Kovacic, I.: Approximations for motion of the oscillators with a non-negative real-power restoring force. J. Sound Vib. 330(2), 321–336 (2011)CrossRefGoogle Scholar
  28. 28.
    Al-Shudeifat, M.A.: Amplitudes decay in different kinds of nonlinear oscillators. J. Vib. Acoust. 137(3), 031012 (2015)CrossRefGoogle Scholar
  29. 29.
    Al-Shudeifat, M.A.: Approximation of the frequency-energy dependence in the nonlinear dynamical systems. In: ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference No. DETC2016-60163, pp. V006T09A042–V006T09A042 (2016)Google Scholar
  30. 30.
    Al-Shudeifat, M.A.: Time-varying stiffness method for extracting the frequency-energy dependence in the nonlinear dynamical systems. Nonlinear Dyn. 89(2), 1463–1474 (2017)CrossRefGoogle Scholar
  31. 31.
    AL-Shudeifat, M.A.: Amplitude-dependent stiffness method for studying frequency and damping variations in nonlinear dynamical systems. In: ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference No. DETC2017-67918, pp. V006T10A047–V006T10A047 (2017)Google Scholar
  32. 32.
    Quinn, D.D., Hubbard, S., Wierschem, N., Al-Shudeifat, M.A., Ott, R.J., Luo, J., Spencer Jr., B.F., McFarland, D.M., Vakakis, A.F., Bergman, L.A.: Equivalent modal damping, stiffening and energy exchanges in multi-degree-of-freedom systems with strongly nonlinear attachments. Proc. Inst. Mech. Eng. K J. Multi-body Dyn. 226(2), 122–146 (2012)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Aerospace EngineeringKhalifa University of Science and TechnologyAbu DhabiUAE

Personalised recommendations