Advertisement

Nonlinear Dynamics

, Volume 93, Issue 4, pp 2445–2459 | Cite as

Homoclinic orbits and an invariant chaotic set in a new 4D piecewise affine systems

  • Qigui Yang
  • Kai Lu
Original Paper

Abstract

It is a challenging task to prove mathematically the existence of homoclinic orbits in a high-dimensional dynamical system. Here we first introduce a new four-dimensional (4D) piecewise affine system and then establishes useful yet general conditions on the existence of an orbit homoclinic to a spiral saddle-foci and chaos in the system. Rigorously mathematical analysis is also provided. A 4D example with both a homoclinic orbit and an invariant chaotic set is used to depict the effectiveness of analysis and prediction.

Keywords

Chaos Homoclinic orbit Poincaré map Piecewise affine system 

Notes

Acknowledgements

This study was supported by Natural Science Foundation of China (No. 11671149) and Natural Science Foundation of Guangdong Province (No. 2017A030312006).

References

  1. 1.
    Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)CrossRefMATHGoogle Scholar
  2. 2.
    Chua, L.O., Ying, R.D.: Canonical piecewise-linear analysis. IEEE Trans. Circuits Syst. 30(3), 125–140 (1983)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Schiff, S.J., Jerger, K., Duong, D.H., Chang, T., Spano, M.L., Ditto, W.L.: Controlling chaos in the brain. Nature 8, 615–620 (1994)CrossRefGoogle Scholar
  4. 4.
    Yu, S.M., Lü, J.H., Chen, G.R., Yu, X.H.: Design and implementation of grid multiwing butterfly chaotic attractors from a piecewise lorenz system. IEEE Trans. Circuits Syst. II 57(10), 314–318 (2010)CrossRefGoogle Scholar
  5. 5.
    Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Westview Press, Boulder (2014)MATHGoogle Scholar
  6. 6.
    Vaseghi, B., Pourmina, M.A., Mobayen, S.: Secure communication in wireless sensor networks based on chaos synchronization using adaptive sliding mode control. Nonlinear Dyn. 89, 1689–1704 (2017)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Ren, H.P., Bai, C., Liu, J., Baptista, M.S., Grebogi, C.: Experimental validation of wireless communication with chaos. Chaos 26, 083117 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chen, G.R., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurcat. Chaos 9(7), 1465–1466 (1999)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Lü, J.H., Chen, G.R.: A new chaotic attractor coined. Int. J. Bifurcat. Chaos 12(3), 659–661 (2002)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Yang, Q.G., Chen, G.R., Zhou, T.S.: A unified Lorenz-type system and its canonical form. Int. J. Bifurcat. Chaos 16, 2855–2871 (2006)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Yang, Q.G., Chen, G.R.: A chaotic system with one saddle and two saddle node-foci. Int. J. Bifurcat. Chaos 18, 1393–1414 (2008)CrossRefMATHGoogle Scholar
  12. 12.
    Liu, Y.J., Yang, Q.G.: Dynamics of the Lü system on the invariant algebraic surface and at infinity. Int. J. Bifurcat. Chaos 21, 2559–2582 (2011)CrossRefMATHGoogle Scholar
  13. 13.
    Wei, Z.C., Yang, Q.G.: Dynamical analysis of the generalized Sprott C system with only two stable equilibria. Nonlinear Dyn. 68, 543–554 (2012)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Yang, Q.G., Chen, Y.M.: Complex dynamics in the unified Lorenz-type system. Int. J. Bifurcat. Chaos 24(4), 1450055 (2014)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Leonov, G.A., Kuznetsov, N.V., Mokaev, T.N.: Hidden attractor and homoclinic orbit in Lorenz-like system describing convective fluid motion in rotating cavity. Commun. Nonlinear Sci. 28(1), 166–174 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Yang, Q.G., Bai, M.L.: A new 5D hyperchaotic system based on modified generalized Lorenz system. Nonlinear Dyn. 88(1), 189–221 (2017)CrossRefMATHGoogle Scholar
  17. 17.
    Llibre, J., Ponce, E., Teruel, A.E.: Horseshoes near homoclinic orbits for piecewise linear differential systems in \(\mathbb{R}^3\). Int. J. Bifurcat. Chaos 17(4), 1171–1184 (2007)CrossRefMATHGoogle Scholar
  18. 18.
    Shilnikov, L.P., Shilnikov, A.L., Turaev, D.V., Chua, L.O.: Methods of Qualitative Theory in Nonlinear Dynamics (Part I). World Scientific, Singapore (1998)CrossRefMATHGoogle Scholar
  19. 19.
    Shilnikov, L.P., Shilnikov, A.L., Turaev, D.V., Chua, L.O.: Methods of Qualitative Theory in Nonlinear Dynamics (Part II). World Scientific, Singapore (2001)CrossRefMATHGoogle Scholar
  20. 20.
    Wiggins, S.: Global Bifurcations and Chaos: Analytical Methods. Springer, Berlin (2013)MATHGoogle Scholar
  21. 21.
    Bella, G., Mattana, P., Venturi, B.: Shilnikov chaos in the Lucas model of endogenous growth. J. Econ. Theory 172, 451–477 (2017)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Deng, B., Han, M.A., Hsu, S.B.: Numerical proof for chemostat chaos of Shilnikov’s type. Chaos 27(3), 033106 (2017)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Wei, Z.C., Moroz, I., Sprott, J.C., Wang, Z., Zhang, W.: Detecting hidden chaotic regions and complex dynamics in the self-exciting homopolar disc dynamo. Int. J. Bifurcat. Chaos 27(2), 1730008 (2017)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Yang, Q.G., Yang, T.: Complex dynamics in a generalized Langford system. Nonlinear Dyn. 91(4), 2241–2270 (2018)CrossRefMATHGoogle Scholar
  25. 25.
    Wilczak, D., Serrano, S., Barrio, R.: Coexistence and dynamical connections between hyperchaos and chaos in the 4D Rössler system: a computer-assisted proof. SIAM J. Appl. Dyn. Syst. 15(1), 356–390 (2016)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Robinson, R.C.: Dynamical Systems: Stability, Symbolic Dynamics, and Chaos. CRC Press, Boca Raton (1995)MATHGoogle Scholar
  27. 27.
    Hastings, S.P., Troy, W.C.: A shooting approach to chaos in the Lorenz equations. J. Differ. Equ. 127, 41–53 (1996)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Leonov, G.A.: Shilnikov chaos in Lorenz-like systems. Int. J. Bifurcat. Chaos 23(3), 1350058 (2013)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Leonov, G.A., Kuznetsov, N.V., Mokaev, T.N.: Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion. Eur. Phys. J. Spec. Top. 224, 1421–1458 (2015)CrossRefGoogle Scholar
  30. 30.
    Chen, Y.M.: The existence of homoclinic orbits in a 4D Lorenz-type hyperchaotic system. Nonlinear Dyn. 87(3), 1445–1452 (2017)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Carmona, V., Sánchez, F.F., Medina, E.G., Teruel, A.E.: Existence of homoclinic connections in continuous piecewise linear systems. Chaos 20, 013124 (2010)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Bernardo, M.D., Budd, C.J., Champneys, A.R., Kowalczyk, P.: Piecewise-Smooth Dynamical Systems: Theory and Applications, vol. 163. Springer, Berlin (2008)MATHGoogle Scholar
  33. 33.
    Huan, S.M., Li, Q.D., Yang, X.S.: Chaos in three-dimensional hybrid systems and design of chaos generators. Nonlinear Dyn. 69(4), 1915–1927 (2012)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Wu, T.T., Yang, X.S.: A new class of 3-dimensional piecewise affine systems with homoclinic orbits. Discrete Contin. Dyn. Ser. A 36(9), 5119–5129 (2016)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Huan, S.M., Yang, X.S.: Existence of chaotic invariant set in a class of 4-dimensional piecewise linear dynamical systems. Int. J. Bifurcat. Chaos 24(12), 1450158 (2014)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Wu, T.T., Yang, X.S.: Construction of a class of four-dimensional piecewise affine systems with homoclinic orbits. Int. J. Bifurcat. Chaos 26(6), 1650099 (2016)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd edn. Springer, Berlin (2003)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of MathematicsSouth China University of TechnologyGuangzhouChina

Personalised recommendations