Advertisement

Nonlinear Dynamics

, Volume 93, Issue 4, pp 2339–2356 | Cite as

Enhanced isolation performance of a high-static–low-dynamic stiffness isolator with geometric nonlinear damping

  • Guangxu Dong
  • Yahong Zhang
  • Yajun Luo
  • Shilin Xie
  • Xinong Zhang
Original Paper

Abstract

To enhance the low-frequency vibration isolation performance of the high-static–low-dynamic stiffness (HSLDS) isolator, a novel design of the geometric nonlinear damping (GND) comprising semi-active electromagnetic shunt damping is proposed. The GND is dependent on the vibration displacement and velocity, which can make the HSLDS isolator attain different damping characteristics in different frequency bands. Firstly, the configuration of the HSLDS isolator assembled with GND is presented, and then the restoring force, stiffness, and damping are derived. The dynamics of the mount under both base and force excitations are investigated based on the harmonic balance method, which are then verified by numerical simulations. After that, the effects of GND on the displacement and force transmissibility are studied, and the excellent performance caused by GND is analyzed based on the equivalent viscous damping mechanism. Finally, the comparison between the GND and cubic nonlinear damping is performed. The results demonstrate that the HSLDS isolator assembled with GND can realize the requirements of an isolation system under both base and force excitations of broadband vibration isolation performance and a low resonance peak with the high-frequency attenuation unaffected. Moreover, the GND outperforms the linear damping no matter the base excitation or force excitation is applied. For base excitation, the GND exhibits some desirable properties that the cubic nonlinear damping does not have at high frequencies.

Keywords

Geometric nonlinear damping High-static–low-dynamic stiffness Harmonic balance method Base and force excitations Vibration isolation 

Abbreviations

GND

Geometric nonlinear damping

EMSD

Electromagnetic shunt damping

HSLDS

High-static–low-dynamic stiffness

QZS

Quasi-zero stiffness

NSM

Negative stiffness mechanisms

DVDD

Displacement–velocity-dependent damping

SFS

Spiral flexure spring

MNSS

Magnetic negative stiffness spring

MNS

Magnetic negative stiffness

ED

Electromagnetic devices

ENIC

External negative impedance circuits

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China Academy of Engineering Physics and jointly set up “NSAF” joint fund (Grant No. U1630120).

References

  1. 1.
    Rivin, E.I.: Passive vibration isolation. Appl. Mech. Rev. 57(6), B31–B32 (2004)CrossRefGoogle Scholar
  2. 2.
    Thomson, W.: Theory of Vibration with Applications. CRC Press, Boca Raton (1996)Google Scholar
  3. 3.
    Alabuzhev, P.M., Rivin, E.I.: Vibration Protecting and Measuring Systems with Quasi-Zero Stiffness. Hemisphere Pub. Corp, Washington (1989)Google Scholar
  4. 4.
    Carrella, A., Brennan, M.J., Waters, T.P., Lopes, V.: Force and displacement transmissibility of a nonlinear isolator with high-static--low-dynamic-stiffness. Int. J. Mech. Sci. 55(1), 22–29 (2012).  https://doi.org/10.1016/j.ijmecsci.2011.11.012 CrossRefGoogle Scholar
  5. 5.
    Carrella, A., Brennan, M.J., Waters, T.P.: Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic. J. Sound Vib. 301(3–5), 678–689 (2007).  https://doi.org/10.1016/j.jsv.2006.10.011 CrossRefGoogle Scholar
  6. 6.
    Carrella, A., Brennan, M.J., Kovacic, I., Waters, T.P.: On the force transmissibility of a vibration isolator with quasi-zero-stiffness. J. Sound Vib. 322(4–5), 707–717 (2009).  https://doi.org/10.1016/j.jsv.2008.11.034 CrossRefGoogle Scholar
  7. 7.
    Xu, D.L., Zhang, Y.Y., Zhou, J.X., Lou, J.J.: On the analytical and experimental assessment of the performance of a quasi-zero-stiffness isolator. J. Vib. Control 20(15), 2314–2325 (2014).  https://doi.org/10.1177/1077546313484049 CrossRefGoogle Scholar
  8. 8.
    Platus, D.L.: Negative-stiffness-mechanism vibration isolation systems. In: Derby, E.A., Gordon, C.G., Vukobratovich, D., Yoder, P.R., Zweben, C. (eds.) Optomechanical Engineering and Vibration Control, Proceedings of the Society of Photo-Optical Instrumentation Engineers (Spie), vol. 3786, pp. 98–105. Spie-International Society for Optical Engineering, Bellingham (1999)Google Scholar
  9. 9.
    Huang, X.C., Liu, X.T., Sun, J.Y., Zhang, Z.Y., Hua, H.X.: Vibration isolation characteristics of a nonlinear isolator using Euler buckled beam as negative stiffness corrector: a theoretical and experimental study. J. Sound Vib. 333(4), 1132–1148 (2014).  https://doi.org/10.1016/j.jsv.2013.10.026 CrossRefGoogle Scholar
  10. 10.
    Liu, X.T., Huang, X.C., Hua, H.X.: On the characteristics of a quasi-zero stiffness isolator using Euler buckled beam as negative stiffness corrector. J. Sound Vib. 332(14), 3359–3376 (2013).  https://doi.org/10.1016/j.jsv.2012.10.037 CrossRefGoogle Scholar
  11. 11.
    Huang, X.C., Liu, X.T., Hua, H.X.: Effects of stiffness and load imperfection on the isolation performance of a high-static--low-dynamic-stiffness non-linear isolator under base displacement excitation. Int. J. Non Linear Mech. 65, 32–43 (2014).  https://doi.org/10.1016/j.ijnonlinmec.2014.04.011 CrossRefGoogle Scholar
  12. 12.
    Huang, X.C., Liu, X.T., Sun, J.Y., Zhang, Z.Y., Hua, H.X.: Effect of the system imperfections on the dynamic response of a high-static--low-dynamic stiffness vibration isolator. Nonlinear Dyn. 76(2), 1157–1167 (2014).  https://doi.org/10.1007/s11071-013-1199-7 MathSciNetCrossRefGoogle Scholar
  13. 13.
    Carrella, A., Brennan, M.J., Waters, T.P., Shin, K.: On the design of a high-static--low-dynamic stiffness isolator using linear mechanical springs and magnets. J. Sound Vib. 315(3), 712–720 (2008).  https://doi.org/10.1016/j.jsv.2008.01.046 CrossRefGoogle Scholar
  14. 14.
    Robertson, W.S., Kidner, M.R.F., Cazzolato, B.S., Zander, A.C.: Theoretical design parameters for a quasi-zero stiffness magnetic spring for vibration isolation. J. Sound Vib. 326(1–2), 88–103 (2009).  https://doi.org/10.1016/j.jsv.2009.04.015 CrossRefGoogle Scholar
  15. 15.
    Xu, D.L., Yu, Q.P., Zhou, J.X., Bishop, S.R.: Theoretical and experimental analyses of a nonlinear magnetic vibration isolator with quasi-zero-stiffness characteristic. J. Sound Vib. 332(14), 3377–3389 (2013).  https://doi.org/10.1016/j.jsv.2013.01.034 CrossRefGoogle Scholar
  16. 16.
    Wu, W.J., Chen, X.D., Shan, Y.H.: Analysis and experiment of a vibration isolator using a novel magnetic spring with negative stiffness. J. Sound Vib. 333(13), 2958–2970 (2014).  https://doi.org/10.1016/j.jsv.2014.02.009 CrossRefGoogle Scholar
  17. 17.
    Dong, G.X., Zhang, X.N., Xie, S.L., Yan, B., Luo, Y.J.: Simulated and experimental studies on a high-static--low-dynamic stiffness isolator using magnetic negative stiffness spring. Mech. Syst. Signal Process. 86, 188–203 (2017).  https://doi.org/10.1016/j.ymssp.2016.09.040 CrossRefGoogle Scholar
  18. 18.
    Zhou, N., Liu, K.: A tunable high-static--low-dynamic stiffness vibration isolator. J. Sound Vib. 329(9), 1254–1273 (2010).  https://doi.org/10.1016/j.jsv.2009.11.001 CrossRefGoogle Scholar
  19. 19.
    Ravindra, B., Mallik, A.K.: Hard Duffing-type vibration isolator with combined Coulomb and viscous damping. Int. J. Non Linear Mech. 28(4), 427–440 (1993).  https://doi.org/10.1016/0020-7462(93)90017-F CrossRefMATHGoogle Scholar
  20. 20.
    Ho, C., Lang, Z.Q., Billings, S.A.: A frequency domain analysis of the effects of nonlinear damping on the Duffing equation. Mech. Syst. Signal Process. 45(1), 49–67 (2014).  https://doi.org/10.1016/j.ymssp.2013.10.027 CrossRefGoogle Scholar
  21. 21.
    Ho, C., Lang, Z.Q., Billings, S.A.: Design of vibration isolators by exploiting the beneficial effects of stiffness and damping nonlinearities. J. Sound Vib. 333(12), 2489–2504 (2014).  https://doi.org/10.1016/j.jsv.2014.02.011 CrossRefGoogle Scholar
  22. 22.
    Peng, Z.K., Meng, G., Lang, Z.Q., Zhang, W.M., Chu, F.L.: Study of the effects of cubic nonlinear damping on vibration isolations using harmonic balance Method. Int. J. Non Linear Mech. 47(10), 1073–1080 (2012).  https://doi.org/10.1016/j.ijnonlinmec.2011.09.013 CrossRefGoogle Scholar
  23. 23.
    Laalej, H., Lang, Z.Q., Daley, S., Zazas, I., Billings, S.A., Tomlinson, G.R.: Application of non-linear damping to vibration isolation: an experimental study. Nonlinear Dyn. 69(1–2), 409–421 (2012).  https://doi.org/10.1007/s11071-011-0274-1 CrossRefGoogle Scholar
  24. 24.
    Milovanovic, Z., Kovacic, I., Brennan, M.J.: On the displacement transmissibility of a base excited viscously damped nonlinear vibration isolator. J. Vib. Acoust. 131(5), 054502 (2009).  https://doi.org/10.1115/1.3147140 CrossRefGoogle Scholar
  25. 25.
    Tang, B., Brennan, M.J.: A comparison of two nonlinear damping mechanisms in a vibration isolator. J. Sound Vib. 332(3), 510–520 (2013).  https://doi.org/10.1016/j.jsv.2012.09.010 CrossRefGoogle Scholar
  26. 26.
    Freischlag, J.A., Lawrence, P.F., Perler, B.A.: The Society for Vascular Surgery will participate in a new global vascular practice guidelines initiative. J. Sound Vib. 59(2), 510–510 (2014).  https://doi.org/10.1016/j.jvs.2013.12.025 Google Scholar
  27. 27.
    Sun, X.T., Jing, X.J.: Analysis and design of a nonlinear stiffness and damping system with a scissor-like structure. Mech. Syst. Signal Process. 66–67, 723–742 (2016).  https://doi.org/10.1016/j.ymssp.2015.05.026 CrossRefGoogle Scholar
  28. 28.
    Sun, X.T., Xu, J., Jing, X.J., Cheng, L.: Beneficial performance of a quasi-zero-stiffness vibration isolator with time-delayed active control. Int. J. Mech. Sci. 82, 32–40 (2014).  https://doi.org/10.1016/j.ijmecsci.2014.03.002 CrossRefGoogle Scholar
  29. 29.
    Xu, J., Sun, X.T.: A multi-directional vibration isolator based on Quasi-Zero-Stiffness structure and time-delayed active control. Int. J. Mech. Sci. 100, 126–135 (2015).  https://doi.org/10.1016/j.ijmecsci.2015.06.015 CrossRefGoogle Scholar
  30. 30.
    Huang, X.C., Sun, J.Y., Hua, H.X., Zhang, Z.Y.: The isolation performance of vibration systems with general velocity–displacement-dependent nonlinear damping under base excitation: numerical and experimental study. Nonlinear Dyn. 85(2), 777–796 (2016).  https://doi.org/10.1007/s11071-016-2722-4 MathSciNetCrossRefGoogle Scholar
  31. 31.
    Rahim, M.A., Waters, T.P., Rustighi, E.: Active damping control for vibration isolation of high-static--low-dynamic-stiffness isolators. In: Proceedings of International Conference on Noise and Vibration Engineering (ISMA2014) and International Conference on Uncertainty in Structural Dynamics (USD2014), pp. 173–186 (2014)Google Scholar
  32. 32.
    Cheng, C., Li, S.M., Wang, Y., Jiang, X.X.: Force and displacement transmissibility of a quasi-zero stiffness vibration isolator with geometric nonlinear damping. Nonlinear Dyn. 87(4), 2267–2279 (2017).  https://doi.org/10.1007/s11071-016-3188-0 CrossRefGoogle Scholar
  33. 33.
    Yan, B., Luo, Y.J., Zhang, X.N.: Structural multimode vibration absorbing with electromagnetic shunt damping. J. Vib. Control 22(6), 1604–1617 (2016).  https://doi.org/10.1177/1077546314543809 MathSciNetCrossRefGoogle Scholar
  34. 34.
    Yan, B., Zhang, X.N., Luo, Y.J., Zhang, Z.F., Xie, S.L., Zhang, Y.H.: Negative impedance shunted electromagnetic absorber for broadband absorbing: experimental investigation. Smart Mater. Struct. 23(12), 11 (2014).  https://doi.org/10.1088/0964-1726/23/12/125044 CrossRefGoogle Scholar
  35. 35.
    Zhang, X.N., Niu, H.P., Yan, B.: A novel multimode negative inductance negative resistance shunted electromagnetic damping and its application on a cantilever plate. J. Sound Vib. 331(10), 2257–2271 (2012).  https://doi.org/10.1016/j.jsv.2011.12.028 CrossRefGoogle Scholar
  36. 36.
    Niu, H.P., Zhang, X.N., Xie, S.L., Wang, P.P.: A new electromagnetic shunt damping treatment and vibration control of beam structures. Smart Mater. Struct. 18(4), 15 (2009).  https://doi.org/10.1088/0964-1726/18/4/045009 CrossRefGoogle Scholar
  37. 37.
    Ravaud, R., Lemarquand, G., Electromagnetics, A.: Analytical expressions of the magnetic field created by tile permanent magnets of various magnetization directions. In: Piers 2009 Moscow Vols I and II, Proceedings. Electromagnetics Acad, Cambridge (2009)Google Scholar
  38. 38.
    Kovacic, I., Brennan, M.J.: The Duffing Equation: Nonlinear Oscillators and Their Behaviour. Wiley, New York (2011)CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Guangxu Dong
    • 1
  • Yahong Zhang
    • 1
  • Yajun Luo
    • 1
  • Shilin Xie
    • 1
  • Xinong Zhang
    • 1
  1. 1.State Key Laboratory for Strength and Vibration of Mechanical Structures, School of AerospaceXi’an Jiao Tong UniversityXi’anPeople’s Republic of China

Personalised recommendations