Advertisement

Nonlinear Dynamics

, Volume 93, Issue 4, pp 1899–1910 | Cite as

Generalized multiscale Lempel–Ziv complexity of cyclic alternating pattern during sleep

  • Chien-Hung Yeh
  • Wenbin Shi
Original Paper
  • 105 Downloads

Abstract

Increasing evidences show that multiscale complexity measure is an intuitive and effective measure in quantifying various physical and physiological states. In this study, we demonstrate that the classical algorithm of multiscale Lempel–Ziv complexity (multiscale LZC or MLZ) has a critical limitation in neglecting rapid rhythms in complex systems. To this end, simulations added with different levels of white noise are designed to examine whether or not MLZ calculation neglects the effects of high-frequency noise. In addition, an algorithm by obtaining coarse-grained multiscale LZC, so-called generalized multiscale LZC (gMLZ), is proposed to yield a spectrum of complexity. A series of simulated non-stationary signals are generated for comparing the performances between MLZ and gMLZ. Besides, cyclic alternating pattern (CAP), characterized by the excessive synchronization of neuronal activity, has been associated with its power and physiological states. To understand how the synchronization of neuronal activities in different phase-A subtypes in exerting an influence over its power and complexity, we analyze the gMLZ of the real CAP database and compare it to its power spectra as well as modified multiscale entropy (MMSE), which is one of the most well-known multiscale complexity-based measures. The novel algorithm reveals that the evaluated complexities in different phase-A subtypes are inversely related to both the power and excessive synchronization in different timescales in general. The impact of frequencies, sleep stages and pathophysiological conditions on these two complexity measures is also examined. The discerning abilities of different phase-A subtypes using coarse-grained complexity measures (gMLZ and MMSE) are more consistent than power across different time scales. Our approach makes up a deficiency in handling with high-frequency oscillations and enables us to examine complexities of nonlinear systems in a wide-range of timescales.

Keywords

Lempel–Ziv complexity Multiscale complexity Cyclic alternating pattern Sleep 

Notes

Acknowledgements

This research is sponsored by the China Postdoctoral Science Foundation (Grant 043206005).

Compliance with ethical standard

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Costa, M., Goldberger, A.L., Peng, C.K.: Multiscale entropy analysis of biological signals. Phys. Rev. E 71, 021906 (2005)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Stam, C.J.: Nonlinear dynamical analysis of EEG and MEG: review of an emerging field. Clin. Neurophysiol. 116, 2266–2301 (2005)CrossRefGoogle Scholar
  3. 3.
    Kolmogorov, A.N.: Three approaches to the definition of the concept “quantity of information”. Probl. Peredachi Inf. 1, 3–11 (1965)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Solomonoff, R.J.: A formal theory of inductive inference. Part II. Inf. Control 7, 224–254 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Lempel, A., Ziv, J.: On the complexity of finite sequences. IEEE Trans. Inf. Theory 22, 75–81 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Kaspar, F., Schuter, H.G.: Easily calculable measure for the complexity of spatiotemporal patterns. Phys. Rev. A 36, 842–848 (1987)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Jeong, J., Chae, J.H., Kim, S.Y., Han, S.H.: Nonlinear dynamic analysis of the EEG in patients with Alzheimer’s disease and vascular dementia. Clin. Neurophysiol. 18, 58–67 (2001)CrossRefGoogle Scholar
  8. 8.
    Jeong, J., Kim, S.Y., Han, S.H.: Non-linear dynamical analysis of the EEG in Alzheimer’s disease with optimal embedding dimension. Electroen. Clin. Neurophysio 106, 220–228 (1998)CrossRefGoogle Scholar
  9. 9.
    Jelles, B., van Birgelen, J.H., Slaets, J.P., Hekster, R.E., Jonkman, E.J., Stam, C.J.: Decrease of non-linear structure in the EEG of Alzheimer patients compared to healthy controls. Clin. Neurophysiol. 110, 1159–1167 (1999)CrossRefGoogle Scholar
  10. 10.
    Grassberger, P., Procaccia, I.: Characterization of strange attractors. Phys. Rev. Lett. 50, 346 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Eckmann, J.P., Ruelle, D.: Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems. Physica D 56, 185–187 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Richman, J.S., Moorman, J.R.: Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Psychol. 278, H2039–H2049 (2000)Google Scholar
  13. 13.
    Nagaragan, R.: Quantifying physiological data with Lempel-Ziv complexity-certain issues. IEEE T. Biomed. Eng. 49, 1371–1373 (2002)CrossRefGoogle Scholar
  14. 14.
    Aboy, M., Hornero, R., Abásolo, D., Alvarez, D.: Interpretation of the Lempel-Ziv complexity measure in the context of biomedical signal analysis. IEEE T. Biomed. Eng. 53, 2282–2288 (2006)CrossRefGoogle Scholar
  15. 15.
    Li, Y., Tong, S., Liu, D., Gai, Y., Wang, X., Wang, J., Qiu, Y., Zhu, Y.: Abnormal EEG complexity in patients with schizophrenia and depression. Clin. Neurophysiol. 119, 1232–1241 (2008)CrossRefGoogle Scholar
  16. 16.
    Fernández, A., López-Ibor, M.I., Turrero, A., Santos, J.M., Morón, M.D., Hornero, R., Gómez, C., Méndez, M.A., Ortiz, T., López-Ibor, J.J.: Lempel-Ziv complexity in schizophrenia: a MEG study. Clin. Neurophysiol. 122, 2227–2235 (2011)CrossRefGoogle Scholar
  17. 17.
    Fernández, A., Zuluaga, P., Abásolo, D., Gómez, C., Serra, A., Méndez, M.A., Hornero, R.: Brain oscillatory complexity across the life span. Clin. Neurophysiol. 123, 2154–2162 (2012)CrossRefGoogle Scholar
  18. 18.
    Hornero, R., Abásolo, D., Escudero, J., Gómez, C.: Nonlinear analysis of electroencephalogram and magnetoencephalogram recordings in patients with Alzheimer’s disease. Philos. Trans. R. Soc. A 367, 317–336 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Dauwels, J., Srinivasan, K., Ramasubba Reddy, M., Musha, T., Vialatte, F.B., Latchoumane, C., Jeong, J., Cichocki, A.: Slowing and loss of complexity in Alzheimer’s EEG: two sides of the same coin? Int. J. Alzheimers Dis. 2011, 539621 (2011)Google Scholar
  20. 20.
    Jouny, C.C., Bergey, C.K.: Characterization of early partial seizure onset: frequency, complexity and entropy. Clin. Neurophysiol. 123, 658–669 (2012)CrossRefGoogle Scholar
  21. 21.
    Niedermeyer, E.: The normal EEG in the waking adult.Electroencephalography: Basic Principles, Clinical Applications, and Related field. Williams & Wilkins, Baltimore (1999)Google Scholar
  22. 22.
    Buzsáki, G., Draguhn, A.: Neuronal oscillations in cortical networks. Science 304, 1926–1929 (2004)CrossRefGoogle Scholar
  23. 23.
    Sanei, S., Chambers, J.: Introduction in EEG. Wiley, New York (2007)CrossRefGoogle Scholar
  24. 24.
    Goldberger, A.L., Amaral, L.A., Hausdorff, J.M., Ivanov, PCh., Peng, C.K., Stanley, H.E.: Fractal dynamics in physiology: alterations with disease and aging. Proc. Natl. Acad. Sci. USA 99, 2466–2472 (2002)CrossRefGoogle Scholar
  25. 25.
    Ibáñez-Molina, A.J., Iglesias-Parro, S., Soriano, M.F., Aznarte, J.I.: Multiscale Lempel-Ziv complexity for EEG measures. Clin. Neurophysiol. 126, 541–548 (2015)CrossRefGoogle Scholar
  26. 26.
    Hu, J., Gao, J., Wang, X.: Multifractal analysis of sunspot time series: the effects of the 11-year cycle and Fourier truncation. J. Stat. Mech. C Theory Exp. 2, P02066 (2009)Google Scholar
  27. 27.
    Bell, I.R., Howerter, A., Jackson, N., Aickin, M., Bootzin, R.R., Brooks, A.J.: Nonlinear dynamical systems effects of homeopathic remedies on multiscale entropy and correlation dimension of slow wave sleep EEG in young adults with histories of coffee-induced insomnia. Homeopathy 101, 182–192 (2012)CrossRefGoogle Scholar
  28. 28.
    Chung, C.C., Kang, J.H., Yuan, R.Y., Wu, D., Chen, C.C., Chi, N.F., Chen, P.C., Hu, C.J.: Multiscale entropy analysis of electroencephalography during sleep in patient with Parkinson disease. Clin. EEG Neurosci. 44, 221–226 (2013)CrossRefGoogle Scholar
  29. 29.
    Shi, W., Shang, P., Ma, Y., Sun, S., Yeh, C.H.: A comparison study on stages of sleep: Quantifying multiscale complexity using higher moments on coarse-graining. Commun. Nonlinear Sci. Numer. Simul. 44, 292–303 (2017)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Humeau-Heurtier, A.: The multiscale entropy algorithm and its variants: a review. Entropy 17, 3110–3123 (2015)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Wu, S.D., Wu, C.W., Lee, K.Y., Lin, S.G.: Modified multiscale entropy for short-term time series analysis. Phys. A. 392, 5865–5873 (2013)CrossRefGoogle Scholar
  32. 32.
    Terzano, M.G., Mancia, D., Salati, M.R., Costani, G., Decembrino, A., Parrino, L.: The cyclic alternating pattern as a physiologic component of normal NREM sleep. Sleep 8, 137–145 (1985)CrossRefGoogle Scholar
  33. 33.
    Terzano, M.G., Parrino, L., Sherieri, A., Chervin, R., Chokroverty, S., Guilleminault, C., Hirshkowitz, M., Mahowald, M., Moldofsky, H., Rosa, A., Thomas, R., Walters, A.: Atlas, rules, and recording techniques for the scoring of cyclic alternating pattern (CAP) in human sleep. Sleep Med. 2, 537–553 (2001)CrossRefGoogle Scholar
  34. 34.
    Lundberg, N.: Continuous recording and control of ventricular fluid pressure in neurosurgical practice. Acta. Psychiatr. Scand. 36, 1–193 (1960)Google Scholar
  35. 35.
    Evans, B.M.: Periodic activity in cerebral arousal mechanisms-the relationship to sleep and brain damage. Electroencephalogr. Clin. Neurophysiol. 83, 130–137 (1992)CrossRefGoogle Scholar
  36. 36.
    Steriade, M., Amzica, F., Contreras, D.: Cortical and thalamic cellular correlates of electroencephalographic burst-suppression. Electroencephalogr. Clin. Neurophysiol. 90, 1–16 (1994)CrossRefGoogle Scholar
  37. 37.
    Goldberger, A.L., Amaral, L.A., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.K., Stanley, H.E.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101, e215–e220 (2000)CrossRefGoogle Scholar
  38. 38.
    Rechtscahffen, A.: A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. U.S. National Institutes of Health 204 (1968)Google Scholar
  39. 39.
    De Carli, F., Nobili, L., Beelke, M., Watanabe, T., Smerieri, A., Parrino, L., Terzano, M.G., Ferrillo, F.: Quantitative analysis of sleep EEG microstructure in the time-frequency domain. Brain Res. Bull. 63, 399–405 (2004)CrossRefGoogle Scholar
  40. 40.
    Ferri, R., Rundo, F., Bruni, O., Terzano, M.G., Stam, C.J.: Dynamics of the EEG slow-wave synchronization during sleep. Clin. Neurophysiol. 116, 2783–2795 (2005)CrossRefGoogle Scholar
  41. 41.
    Togo, F., Cherniack, N.S., Natelson, B.H.: Electroencephalogram characteristics of autonomic arousals during sleep in healthy men. Clin. Neurophysiol. 117, 2597–2603 (2006)CrossRefGoogle Scholar
  42. 42.
    Ferri, R., Parrino, L., Smerieri, A., Terzano, M.G., Elia, M., Musumeci, S.A., Pettinato, S.J.: Cyclic alternating pattern and spectral analysis of heart rate variability during normal sleep. Sleep Res. 9, 13–18 (2000)CrossRefGoogle Scholar
  43. 43.
    Ferri, R., Bruni, O., Miano, S., Terzano, M.G.: Topographic mapping of the spectral components of the cyclic alternating pattern (CAP). Sleep Med. 6, 29–36 (2005)CrossRefGoogle Scholar
  44. 44.
    Terzano, M.G., Parrino, L., Boselli, M., Smerieri, A., Spaggiari, M.C.: CAP components and EEG synchronization in the first 3 sleep cycles. Clin. Neurophysiol. 111, 283–290 (2000)Google Scholar
  45. 45.
    Ferrillo, F., Gabarra, M., Nobili, L., Parrino, L., Schiavi, G., Stubinski, B., Terzano, M.G.: Comparison between visual scoring of cyclic alternating pattern (CAP) and computerized assessment of slow EEG oscillations in the transition from light to deep non-REM sleep. J. Clin. Neurophysiol. 14, 210–216 (1997)CrossRefGoogle Scholar
  46. 46.
    Stam, C.J., Nicolai, J., Keunen, R.W.: Nonlinear dynamical analysis of periodic lateralized epileptiform discharges. Clin. Electroencephalogr. 29, 101–105 (1998)CrossRefGoogle Scholar
  47. 47.
    Ferri, R., Parrino, L., Smerieri, A., Terzano, M.G., Elia, M., Musumeci, S.A., Pettinato, S., Stam, C.J.: Non-linear EEG measures during sleep: effects of the different sleep stages and cyclic alternating pattern. Int. J. Psychophysiol. 43, 273–286 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of NeurologyChang Gung Memorial Hospital and UniversityTaoyuan CityTaiwan
  2. 2.State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic EngineeringTsinghua UniversityBeijingChina

Personalised recommendations